Analyzing Memory Errors in Production

Markus Weninger

Johannes Kepler University Linz, Austria Institute for System Software

Fixing Memory Problems In Production

* not actually Jake

* not actually Jake

* not actually Jake

POLL TIME

POLL TIME

USERS NEED GUIDANCE

Top-down analysis

Top-down analysis

Top-down analysis GC root Which single object / GC root keeps the most other objects alive?

Bottom-up analysis

J⊻U

J⊻U

J⊻U

Detection describes the task of automatically detecting a potential problem, i.e., a suspicious pattern.

Detection describes the task of automatically detecting a potential problem, i.e., a suspicious pattern.

Highlighting the relevant region on the UI helps users to understand where the automatically gained insight can be found if the view was inspected manually.

Detection describes the task of automatically detecting a potential problem, i.e., a suspicious pattern.

Highlighting the relevant region on the UI helps users to understand where the automatically gained insight can be found if the view was inspected manually.

Explanation of the highlighted visualization helps users to interpret it and explains concepts that are needed for this interpretation.

Detection describes the task of automatically detecting a potential problem, i.e., a suspicious pattern.

Highlighting the relevant region on the UI helps users to understand where the automatically gained insight can be found if the view was inspected manually.

Explanation of the highlighted visualization helps users to interpret it and explains concepts that are needed for this interpretation.

Suggestions on which steps could / should be taken next make it easier for the user to understand what operations are possible and why they might be useful.

Detection describes the task of automatically detecting a potential problem, i.e., a suspicious pattern.

Highlighting the relevant region on the UI helps users to understand where the automatically gained insight can be found if the view was inspected manually.

Explanation of the highlighted visualization helps users to interpret it and explains concepts that are needed for this interpretation.

Suggestions on which steps could / should be taken next make it easier for the user to understand what operations are possible and why they might be useful.

DEMO: EASYTRAVEL

Overview

Search and book a journey on the easyTravel web frontend with a realistic multi step booking process.

Start all the tiers of easyTravel and enable Preconfigured dashboards and business architecture and performance flaws by selecting a transactions show the full capabilities and value pre-configured scenario. that dynaTrace delivers.

easyTravel provides a web portal which allows users to log in, search for journeys to various destinations, select promotional journeys directly that are offered and to book a journey using credit card details. Additionally a Business-to-Business (B2B) web portal for travel agencies is provided where travel agencies can manage the journeys that they offer and can review reports about made bookings.

easyTravel is a multi-tier application implemented in .Net and Java. The starting of the various tiers and the enabling/disabling of different problem pattern plugins is done via a separate easyTravel Launcher. The Launcher allows the user to conveniently switch between different demo scenarios. Each scenario can define load scripts and certain problem pattern plugins that are enabled. The scenarios can be modified or extended by changing an XML file. This is useful when giving demos and allows you to focus on problem areas that are particularly relevant for a specific demo.

Download (Installer + License)

- > easyTravel Demo License
- > Latest easyTravel version
- > easyTravel for AppMon 7.2
- > easyTravel for AppMon 7.1

DEMO: OVERVIEW

AntTracks Analyzer

No operations running

DEMO: OVERVIEW (1) DETECTION + (2) HIGHLIGHTING

DEMO: OVERVIEW (3) EXPLANATION + (4) SUGGESTION

DEMO: EVOLUTION

DEMO: EVOLUTION

DEMO: EVOLUTION

Call Sites:

Name	Collected objects
▼ Overall	16.677.450
🔻 🛔 0 GCs survived	16.673.869
Promise\$WaitQueue\$\$anon\$4	4.152.026
Promise\$Monitored	4.151.660
Future\$\$anonfun\$onSuccess\$1	4.151.598
🔻 💿 FinagleHttp\$\$anonfun\$runIteration\$1\$\$anon\$2\$\$anonfun\$run\$1\$\$ano	4.151.596
FinagleHttp\$\$anonfun\$runIteration\$1\$\$anon\$2\$\$anonfun\$run\$1::ap	4.151.596

Name	Collected objects
 Overall 	16.677.450
🔻 🛔 0 GCs survived	16.673.869
Promise\$WaitQueue\$\$anon\$4	4.152.026
Promise\$Monitored	4.151.660
Future\$\$anonfun\$onSuccess\$1	4.151.598
🔻 💿 FinagleHttp\$\$anonfun\$runIteration\$1\$\$anon\$2\$\$anonfun\$run\$1\$\$ano	4.151.596
FinagleHttp\$\$anonfun\$runIteration\$1\$\$anon\$2\$\$anonfun\$run\$1::ap	4.151.596

Name	Collected objects
▼ Overall	16.677.450
🔻 🛔 0 GCs survived	16.673.869
Promise\$WaitQueue\$\$anon\$4	4.152.026
Promise\$Monitored	4.151.660
Future\$\$anonfun\$onSuccess\$1	4.151.598
🔻 💿 FinagleHttp\$\$anonfun\$runIteration\$1\$\$anon\$2\$\$anonfun\$run\$1\$\$ano	4.151.596
FinagleHttp\$\$anonfun\$runIteration\$1\$\$anon\$2\$\$anonfun\$run\$1::ap	4.151.596

Name	Collected objects
▼ Overall	16.677.450
🔻 🛔 0 GCs survived	16.673.869
Promise\$WaitQueue\$\$anon\$4	4.152.026
Promise\$Monitored	4.151.660
Future\$\$anonfun\$onSuccess\$1	4.151.598
🔻 💿 FinagleHttp\$\$anonfun\$runIteration\$1\$\$anon\$2\$\$anonfun\$run\$1\$\$ano	4.151.596
FinagleHttp\$\$anonfun\$runIteration\$1\$\$anon\$2\$\$anonfun\$run\$1::ap	4.151.596

Name	Collected objects
▼ Overall	16.677.450
🔻 🛔 0 GCs survived	16.673.869
Promise\$WaitQueue\$\$anon\$4	4.152.026
Promise\$Monitored	4.151.660
Future\$\$anonfun\$onSuccess\$1	4.151.598
🔻 💿 FinagleHttp\$\$anonfun\$runIteration\$1\$\$anon\$2\$\$anonfun\$run\$1\$\$ano	4.151.596
FinagleHttp\$\$anonfun\$runIteration\$1\$\$anon\$2\$\$anonfun\$run\$1::ap	4.151.596

DEMO: FINAGLE-HTTP

val response: Future[http.Response] = client(request)

DEMO: FINAGLE-HTTP

```
val response: Future[http.Response] = client(request)
for (i <- 0 until NUM_REQUESTS) {
    Await.result(response.onSuccess { rep: http.Response =>
        totalLength += rep.content.length
    })
}
```


DEMO: FINAGLE-HTTP

<pre>val response: Future[http.Response] = client(request)</pre>
for (i <- 0 until NUM_REQUESTS) {
Await.result(response.onSuccess { rep: http.Response =>
<pre>totalLength += rep.content.length</pre>
})

}


```
val h = { rep: http.Response =>
    totalLength += rep.content.length
}
for (i <- 0 until NUM_REQUESTS {
    Await.result(response.onSuccess(h))
}</pre>
```


TAKE-AWAYS

TAKE-AWAYS

Memory Analysis

Top-down Bottom-up

Heap dumps

Trace-based

... and 100 other things

TAKE-AWAYS		
Memory Analysis	Problem	
Top-down	New users need	
Bottom-up	guidance to get started faster	
Heap dumps		
	It is not enough to	
Trace-based	"throw tools at them"	
and 100 other things		

IARE-AWATS

Memory Analysis	Problem	Guided Exploration
Top-down	New users need	Detection
Bottom-up	guidance to get started faster	Highlighting
Heap dumps		
	It is not enough to	Explanation
Trace-based	"throw tools at them"	
and 100 other things		Suggestion

TAKE-AWAYS

Memory Analysis	Problem	Guided Exploration
Top-down	New users need	Detection
Bottom-up	guidance to get started faster	Highlighting
Heap dumps		
Trace-based	It is not enough to "throw tools at them"	Explanation
and 100 other things		Suggestion
	Markus Wen	inger

Linz, Austria markus.weninger@jku.at

http://bit.ly/weninger_ssw

Additional Notes

- Some icons made by Freepik & Smashicons from <u>https://www.flaticon.com</u>
- Some photos made by <u>bruce mars</u> and <u>Isaque Pereira</u> from <u>Pexels</u>

J⊻U