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Why is my
program
crashing?

*not actually Jake
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Let's try a
memory
| I - ” L analysis tool!
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Thanks Markus, but that
seems like a lot to learn...

Okay, let us try to
Improve that in AntTracks
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Application Monitoring Tool
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o

Detection describes the task of automatically detecting a potential problem, i.e.,
a suspicious pattern.
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Application Monitoring Tool
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Detection describes the task of automatically detecting a potential problem, i.e.,
a suspicious pattern.

Highlighting the relevant region on the Ul helps users to understand where the
automatically gained insight can be found if the view was inspected manually.
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Application Monitoring Tool
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Highlighting the relevant region on the Ul helps users to understand where the
automatically gained insight can be found if the view was inspected manually.

Explanation of the highlighted visualization helps users to interpret it and
explains concepts that are needed for this interpretation.
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Application Monitoring Tool

(4)
Suggest

(1) (2) — (3)

\
Detect Highlight i  Explain
— suspicious respective
pattern UI element

rationale

next analysis step

Detection describes the task of automatically detecting a potential problem, i.e.,
a suspicious pattern.

Highlighting the relevant region on the Ul helps users to understand where the
automatically gained insight can be found if the view was inspected manually.

Explanation of the highlighted visualization helps users to interpret it and
explains concepts that are needed for this interpretation.

Suggestions on which steps could / should be taken next make it easier for the
user to understand what operations are possible and why they might be useful.
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explains concepts that are needed for this interpretation.

Suggestions on which steps could / should be taken next make it easier for the
user to understand what operations are possible and why they might be useful.
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DEMO: EASYTRAVEL

Overview

n

Search and book a journey on the easyTravel web Start all the tiers of easyTravel and enable Preconfigured dashboards and business
frontend with a realistic multi step booking architecture and performance flaws by selecting a transactions show the full capabilities and value
process. pre-configured scenario. that dynaTrace delivers.

easyTravel provides a web portal which allows users to log in, search for journeys to various destinations, select promotional journeys directly that are offered and
to book a journey using credit card details. Additionally a Business-to-Business (B2B) web portal for travel agencies is provided where travel agencies can manage
the journeys that they offer and can review reports about made bookings.

easyTravel is a multi-tier application implemented in .Net and Java. The starting of the various tiers and the enabling/disabling of different problem pattern plugins
is done via a separate easyTravel Launcher. The Launcher allows the user to conveniently switch between different demo scenarios. Each scenario can define load
scripts and certain problem pattern plugins that are enabled. The scenarios can be modified or extended by changing an XML file. This is useful when giving demos
and allows you to focus on problem areas that are particularly relevant for a specific demo.

Download (Installer + License)

> easyTravel Demo License

> Latest easyTravel version
> easyTravel for AppMon 7.2

> easyTravel for AppMon 71

J ! U Fixing Memory Problems In Production
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DEMO: OVERVIEW

= AntTracks Analyzer

Guidance: | Description:
(1) click at a single point in time on a chart to select it. You can then examine the heap state at that time.
(2) click at two points in time to select a time window. You can the perform heap evolution analyses over the selected window.

Charts can be zoomed in by dragging the mouse left-to-right and zoomed out by dragging the mouse right-to-left.

Charts can be dragged along the x-axis by holding down the CTRL key during mouse drag.
Right-click the chart for further options (such as image export).

Occupied memory

Memory [Mb]
N
B

15
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5
0 20000 40000 60000 80000 100000 120000 140000 160000 130000 200.000 220000 240000 260.000 280000 300000 320000 340000 360000 380000 400000 420000 440000 450000 430000 500.000
Time [ms]

V| Synczoom Configure...
GC Overhead

"
90

Time spent in GC [%]

|
10
, P P T - I . [

0 20000 40.000 60.000 80.000 100.000 120.000 140.000 160.000 120.000 200.000 220.000 240.000 260.000 280.000 300.000 320.000 340.000 350.000 330.000 400.000 420.000 440.000 460.000 480.000 500.000
Time [ms]

V| Synczoom | configure...

» Med

No operations running

Fixing Memory Problems In Production

Tabs:
Welcome!

*  Plea: a trace file.

Application - trace
Tr: i backend'

Actions:
Operations

Heap state analysis
roup and inspect the live heap obje
ntintime
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DEMO: OVERVIEW
(1) DETECTION + (2) HIGHLIGHTING

Memory

d memory

35 |-

w
=

20

Memory [Mb]
b

] 20.000 40000 60000 80000 100.000 120.000 140.000 160.000 180.000 200.000 220.000 240000 260.000 280.000 300.000 320.000 340.000 360000 320.000 400.000 420.000 440.000 460.000 420.000 500.000
Time [ms]

v Synczoom Configure...
GC Overhead

Time spent in GC [%]

0 20000 40.000 60.000 20.000 100.000 120.000 140.000 150.000 180.000 200.000 220.000 240.000 260.000 280.000 300.000 320.000 340.000 360.000 330.000 400.000 420.000 440000 450.000 480.000 500.000
Time [ms]

v Synczoom Configure...
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DEMO: OVERVIEW
(3) EXPLANATION + (4) SUGGESTION

Memory

memory

©

AntTracks has detected a timeframe over which the reachable
memory is continuously growing. This is an indicator for a
memory leak.

Memory leaks are often caused by indefinitely growing data
structures - AntTracks can help you find these data structures by
calculating their growth over time.

Also, if a memory leak exists, typically objects of a few common
types accumulate over time. AntTracks can help you to identify

Potential memory leak!

Memory [Mb]
5

0 20000 40000 60000 80000 100,000 120000 140000 160.000 180000 200000 220000 240000 260000 280.0i

Time [ms]
v Synczoom Configure...

GC Overhead

= these objects by visualizing the evolution of the heap
© - -
£ compositon over time.
]
E ANALYZE OBJECT GROUP TRENDS AND DATA STRUCTURE GROWTH
E
£

0 20000 40000 60.000 80000 100.000 120.000 140.000 160.000 180.000 200.000 220.000 240.000 260.000 280.000 300.000 320.000 340.000 380.000 380.000 400.000 420.000 440.000 450.000 480.000 500.000

Time [ms]

v Synczoom Configure...
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DEMO:

EVOLUTION

400 Date
—_ Location
1°J° 350 HashMap$Node
S 300 [

2 char[]
3 250

£

E 2001

wn

B 1501

2

2 100

o

w
(=T

JXU

160.000 180.000 200.000 220.000 240.000 260.000 280.000 300.000 320.000 340.000 360.000 380.000 400.000 420000 440000 460000 480.000 500.000
Time [ms]
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Type
- Date
l:l Location

l:l HashMap$Node

B charl)

Absolute Growth ¥
104.347
103.079
18.237
15.426
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DEMO: EVOLUTION

a Date
Location
HashMap$Node
charfl

MW W
oo O o
S 2 o o

-
o
=

Objects [Thousands]
= 51
=] =1

w
=

160.000 180.000 200.000 220.000 240.000 260.000 230.000 200.000 320.000 340.000 350.000 320.000 400.000 420.000 440.000 460.000 480.000 500.000

Time [ms]

\ 4

Drill-down selection: (1) Type: Date
Allocation Site:

a Base: it=()
JdbcTimestampTypeDescriptor$TimestampMutabilityPlan::deepCopyNothull () 1

ﬁ Policy Subject:
8 S SO S ——————————————————
=)
(-]
E
|
i
A E—
<}
20

160.000 180.000 200.000 220.000 240.000 260.000 230.000 200.000 320.000 340.000 350.000 320.000 400.000 420.000 440.000 460.000 480.000 500.000

Time [ms]

4

Drill-down selection: (1) Type: Date >>= (2) Allocation Site: Base::<init>()
Call Sites:

J z U Fixing Memory Problems In Production

Type Absolute Growth ¥

[] pate 104.347
[ Location  103.079
[] HashMa... 18237
B char) 15.426

Allocation Site
|:| Base:i<init>()
I:l JdbcTimestampTypeDescri...

- JourneyService:findJourne...

I:l PolicySubject::<init=()

Absolute ...¥
102.079
1.268

0

0
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DEMO: EVOLUTION

a Date
Location
a HashMap$Node

Date objects allocated in the
roesvcce S constructor of Base are the
—— major suspects for a memory
leak since about 30% of the
overall heap growth is
accounted to them.

o
=

Objects [Thousands]
-

[=1 =1

228

160.000 180.000 200.000 220.000 240.000 260.000 280.000 300.000 320.000 340.000 3260.000 320.000 4

Time [ms]

Drill—downselection:l Inspect Who keeps them allve

Allocation

140 a Base::‘i“ir’” ........................................................................ Allo(atiol‘l site Absolute ¥
5 120 -Jdb_cTimee_%tampTv_DeDescriptorSTimestamDMutabilinIan::deeDCODvNotNuII() ............................................................ [ Baseu<init=() 102.079
i a Policy Subject::<init=()
@ RN - Joumeysery ddourneysl) I:l JdbcTimestampTypeDescri...  1.268
=
2 =0 - JourneyServicenfindJourne... 0
5‘ B0 | foeerememem e l:l PolicySubject:<init>() 0
Q
LT ET, | S
5 40
o
20

160.000 180.000 200.000 220.000 240.000 260.000 230.000 200.000 320.000 340.000 350.000 320.000 400.000 420.000 440.000 460.000 480.000 500.000

Time [ms]

Drill-down selection: (1) Type: Date >>= (2) Allocation Site: Base::<init>()
Call Sites:
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DEMO: GRAPH VIEW

JXU

Static field(1

1 root pointer
references 1 obj.

Date (137.843)
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DEMO: GRAPH VIEW

Static field(7

7 root pointers
reference 7 obj.

SimpleDateFormat (72) ResonrceAttributes (4)

72 obj. 4 obj.
reference reference
72 obj. 4 obj.

ileDirContextiFileResourceAttributes (4

Location (135.026) PolicySubject(1.061)

1 . 135.026 obj. 1.061 obj.
root pointer
reference reference

references 1 obj.-—-_.___135026 obj. T 1061 obj.

TypedValue (424)

4 obj.
reference
4 obj.

-
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DEMO: GRAPH VIEW

135.026 Date
objects reachable

AtomicReference (1)

135.026 Date
objects reachable

ConcurrentHashMap (1

135.026 Date
lobjects reachable

ArrayList (1.071)

135.026 Date
jobjects reachable

135.026 Date

object reachable——objects reachable

TypedvValue (424)

424 Date

1.061 Date
objects reachable

JXU
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objects reachable

Date (137.843)

Static fiel

7 Date
objects reachable

72 Date
objects reachable—




DEMO: GRAPH VIEW

class JourneyService {
Static field(1

135.026 Date

}

135.026 Date

objects reachable

135.026 Date

lobjects reachable

135.026 Date 7 Date

jobjects reachable objects reachable
1 Date 135.026 Date 1.061 Date 424 Date 72 Date

object reachable——objects reachable objects reachable objects reachable

Date (137.843)

objects reachable—
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DEMO: GRAPH VIEW

Static field(1

135.026 Date
objects reachable

AtomicReference (1)

135.026 Date
objects reachable

ConcurrentHashMap (1

135.026 Date
objects reachable

ArrayList(1.071)

135.026 Date
jobjects reachable

Static field(1)
135.026 Date

object reachable——objects reachable

JXU

PolicySubject (1.061

class JourneyService {

static AtomicReference locationCache;

Too many ArrayList<Location>
are added here.

1.061 Date
objects reachable

TypedvValue (424)

7 Date
objects reachable

72 Date
objects reachable—

424 Date
objects reachable

Date (137.843)
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ANOTHER DEMO: FINAGLE-HTTP

q{cnaissancc Suite e L e el

A modern benchmark
suite for the JVM

Documentation E5 <& Download latest

GitHub Repo @ o
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ANOTHER DEMO: FINAGLE-HTTP

Objects Memory
Eden Eden
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ANOTHER DEMO: FINAGLE-HTTP

Objects

Eden
Survivor
1,6 Ol e e e e A et

-
E=N

Objects [Million]

0 2.000 4.000 6.000 8.000 10.000 12.000 14.000 16.000
Time [ms]
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ANOTHER DEMO: FINAGLE-HTTP

Name Collected objects
¥ Overall 16.677.450
¥ 3 0GCssurvived 16.673.869
» @ Promise$WaitQueue$Sanonss 4.152.026
» @ Promise$Monitored 4.151.660
» (@ Future$$anonfun$onSuccess$1 4.151.598
v (D FinagleHttpS$anonfun$runiteration$1$$anon$255anonfun$run$i$sancl4.151.596
Q@ FinagleHttp$$anonfunSruniteration$1$$anon$25%anonfunsrun$i::apj4.151.596
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ANOTHER DEMO: FINAGLE-HTTP

Name Collected objects
I¥ oOverall 16.677.450
¥ 3 0GCssurvived 16.673.869
» @ Promise$WaitQueue$Sanonss 4.152.026
» @ Promise$Monitored 4.151.660
» (@ Future$$anonfun$onSuccess51 4.151.598

v (D FinagleHttp5$anonfun$runiteration$1$%$anon$255anonfun$run$i$sano
Q@ FinagleHttp$S$anonfunS$runiteration$1$$anon$2$5anonfunSrun$i::ap
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ANOTHER DEMO: FINAGLE-HTTP

Name Collected objects
I¥ oOverall 16.677.450 |
v # 0GCssurvived 16.673.869 |
» @ Promise$WaitQueue$Sanonss 4.152.026
» @ Promise$Monitored 4.151.660
» (@ Future$$anonfun$onSuccess51 4.151.598
v (D FinagleHttpS$anonfun$runiteration$1$$anon$255anonfun$run$i$sancl4.151.596
Q@ FinagleHttp$$anonfunSruniteration$1$$anon$25%anonfunsrun$i::apj4.151.596
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ANOTHER DEMO: FINAGLE-HTTP

Name Collected objects
I¥ oOverall 16.677.450 |
v ¥ 0GCssurvived 16.673.869 |
» @ Promise$WaitQueue$Sanonss 4.152.026
» @ Promise$Monitored 4.151.660
» (@ Future$$anonfun$onSuccess51 4.151.598

I v (D FinagleHttp5$anonfun$runiteration$1$%$anon$255anonfun$run$i$sano

4.151.

596

Q@ FinagleHttp$$anonfunS$runiteration$1$$anon$2$5anonfunSrun$i::ap
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ANOTHER DEMO: FINAGLE-HTTP

Name Collected objects

I¥ oOverall 16.677.450 |
I v 3 0GCssurvived 16.673.869

» @ Promise$WaitQueue$Sanonss 4.152.026

» @ Promise$Monitored 4.151.660

» (@ Future$$anonfun$onSuccess51 4.151.598
I v (D FinagleHttpS$anonfun$runiteration$1$$anon$255anonfun$run$i$sancl4.151.596
| Q@ FinagleHttp$$anonfunSruniteration$1$$anon$255%anonfunsrun$i::apj4.151.596
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DEMO: FINAGLE-HTTP

val response:

Future[http.Response] = client(request)

JXU
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DEMO: FINAGLE-HTTP

val response: Future[http.Response] = client(request)

for (i <- 0 until NUM REQUESTS) ({
Await.result (response.onSuccess { rep: http.Response =>

totallLength += rep.content.length
})
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DEMO: FINAGLE-HTTP

val response: Future[http.Response] = client(request)

for (i <- 0 until NUM REQUESTS) ({

Await.result(response.onSuccessI{ rep: http.Response =>

totallength += rep.content.length

)
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DEMO: FINAGLE-HTTP

val response: Future[http.Response] = client(request)

for (i <- 0 until NUM REQUESTS) ({

Await.result(response.onSuccessI{ rep: http.Response =>

totallength += rep.content.length

)
}

val h = { rep: http.Response =>
totalLength += rep.content.length

}

for (i <- 0 until NUM REQUESTS {

Await.result (response.onSuccess (h))
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DEMO: FINAGLE-HTTP

val response: Future[http.Response] = client (request)

for (i <- 0 until NUM REQUESTS) ({

Await.result(response.onSuccessI{ rep: http.Response =>

totallength += rep.content.length

)
}

val h =|{ rep: http.Response =>

totalLength += rep.content.length
}

for (i <- 0 until NUM REQUESTS {

Await.result (response.onSuccess (h))
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DEMO: FINAGLE-HTTP

val response: Future[http.Response] = client (request)

for (i <- 0 until NUM REQUESTS) ({

Await.result(response.onSuccessI{ rep: http.Response =>

totallength += rep.content.length

)
}

val h =|{ rep: http.Response =>

totalLength += rep.content.length
}

for (i <- 0 until NUM REQUESTS {

Await.result (response.onSuccess )
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DEMO: FINAGLE-HTTP

val response: Future[http.Response] = client(request)

for (i <- 0 until NUM REQUESTS) ({

Await.result(response.onSuccessI{ rep: http.Response =>

totallength += rep.content.length

)
}

val h =|{ rep: http.Response =>

totalLength += rep.content.length
}

for (i <- 0 until NUM REQUESTS {

Await.result (response.onSuccess )
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DEMO: FINAGLE-HTTP

val response: Future[http.Response] = client (request)

for (i <- 0 until NUM REQUESTS) ({

Await.result (response.onSuccess|{ re .Response =>

totalLength += re nt.length

val h =|{ rep: http.Response =>

totalLength += rep.content.length
}

for (i <- 0 until NUM REQUESTS {

Await.result (response.onSuccess )
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TAKE-AWAYS

JXU
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TAKE-AWAYS

Memory Analysis

Top-down
Bottom-up

Heap dumps

Trace-based

.. and 100 other things
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TAKE-AWAYS

Memory Analysis

Top-down
Bottom-up

Heap dumps
Trace-based

... and 100 other things

New users need
guidance to get
started faster

It is not enough to
.throw tools at them*
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TAKE-AWAYS

Memory Analysis Guided Exploration

Top-down New users need Detection
Bottom-up guidance to get
started faster Highlighting
Heap dumps
It is not enough to Explanation
Trace-based .throw tools at them*
Suggestion
... and 100 other things
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TAKE-AWAYS

Memory Analysis Problem Guided Exploration
Top-down New users need Detection
Bottom-up guidance to get

started faster Highlighting
Heap dumps
It is not enough to Explanation
Trace-based .throw tools at them*
Suggestion
... and 100 other things

Markus Weninger
Johannes Kepler University
Linz, Austria
markus.weninger@jku.at

http://mevss.jku.at/AntTracks
http://bit.ly/weninger ssw
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Additional Notes

B Some icons made by Freepik & Smashicons from https://www.flaticon.com

B Some photos made by bruce mars and Isaque Pereira from Pexels
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https://www.flaticon.com/
https://www.pexels.com/@olly?utm_content=attributionCopyText&utm_medium=referral&utm_source=pexels
https://www.pexels.com/@isaque-pereira-128900?utm_content=attributionCopyText&utm_medium=referral&utm_source=pexels
https://www.pexels.com/photo/man-wearing-brown-jacket-and-using-grey-laptop-874242/?utm_content=attributionCopyText&utm_medium=referral&utm_source=pexels

