Analyzing Memory Errors
in Production

4

Markus Weninger

Johannes Kepler University Linz, Austria
Institute for System Software

JXU

JOHANNES KEPLER
UNIVERSITY LINZ

@ Jdynalrace

WHO ARE WE?

J ! U Fixing Memory Problems In Production

WHO ARE WE?

Oslo
®
Stockholm
Arlanda Airport

KTH Royal Institute

of Technology
RS
Edinburgh
5 Copenhagen
Denmark s Lithua|
United
Kingdom
tan %~ 4 h 25 min
Bl Hamburg
Liverpool
Berlin Poland
Amsterdam e Warsaw
@
Netherlands
London
L
Brussels Cologne Germany
Belgium
olo Frankfurt Plague
Luxembourg
Czechia
Paris
® Slovakia
bJohannes Kepler
blue danube airport Linz ™ ynjversity Linz - JKU
Austria Hud:{wsl
H a
France Switzerland Tk
Slovenia

! Fixing Memory Problems In Production

WHO ARE WE?

02&0
Stockholm ‘
Arlanda Airport/ K TH Royal Institute \
of Technology
/ Ri
!
{
Edinburgh
N Copenhagen
Denma s
United
Kingdom
tan
Manchester Han:)buvg
0
Liverpool
|
Amsterdam Be‘m
®
Netherlands
London
L -
Brussels Cologne Germany
e
: N
Delolen Frankfurt Pl
o
Luxembourg
Paris
®
g °hannes Kepler
blue danube airport Linz niversity Linz - JKU
Austria
Switzerland
France 3

J ! U Fixing Memory Problems In Production 2

WHO ARE WE?

Ozm
Stockholm
Arlanda Airport ¥ k TH Royal Institute
of Technology
"y
Edinburgh
b Copenhagen
Denmark s
United
Kingdom
Manchester Hamobuvg
0
Liverpool
|
Amsterdam Be‘m
®
Netherlands
London
L -
Brussels Cologne Germany
)
: N
Seiohem Frankfurt
o
Luxembourg
Paris
®
g °hannes Kepler
blue danube airport Linz niversity Linz - JKU
Austria
Switzerland
France 3

J ! U Fixing Memory Problems In Production 2

WHO ARE WE?

Oslo
®
Edinburgh
5 Copenhagen
Denmark &
United
Kingdom
tan
Manchester Harr:)burg
0
Liverpool
i
Amsterdam Berkn

®

Netherlands

London
L -
Brussels Cologne Germany
)
i
Se- Frankfurt P
o
Luxembourg
Paris
®
blue danube airport Linz g
Austria
Switzerland
France 5

JXU

Stockholm
Arlanda Airport

KTH Royal Institute
of Technology

/

P ¥ 4h25m
rom €443

Pol

Pohannes Kepler
niversity Linz - JKU

Byl

Slovenia

Fixing Memory Problems In Production

WHO ARE WE?

Ogio
Stockholm

Arlanda Airport/¥ K TH Royal Institute
of Technology

Eden
Erea: S — . - R I Survivor .

e R - - " e . oid

_ ill
5 i]
E = a0
£ =35
n =]
H £
= =%
o

50,000 100,000 150,000 200,000 250,000 300,000 350,000 400,000 450,000 500,000 550,000 600,000 650,000 50,000 100,000 150,000 200,000 250,000 300,000 350,000 400,000 450,000 500,000 550,000 600,000 650,000
Time [ms] Time [ms]

v/ Synczoom Configure... v/| Synczoom Configure...

Garbage Collection Pauses

A OC TITESITONT

Survived / Died: % Objects

Minor

Major

Minor (concurrent)
Major (concurrent)

g F
E 5, |6C Threshold =
@ of Threshold £
@ 1gp /(S Threshold o
H 2
o g 8

§0,000 100,000 150,000 200,000 250,000 300’_?5::?:_;:;)0 400,000 450,000 500,000 550,000 500,000 650,000 50,000 100,000 150,000 200,000 250,000 200,000 350,000 400,000 450,000 500,000 550,000 600,000 650,000

Time [ms]
¥/ Synczoom Configure... V| Synczoom

» Metrics

Fixing Memory Problems In Production 2

WHO ARE WE?

Ozio
Stockholm
Arlanda Airport ¥ k TH Royal Institute
of Technology

Objects

Eden Eden
Survivor o . 1 1 | Survivor
Old '

509]
= os = a0
£ 07 =35
n =]
gos g
= 0.5 = 25
O 04 20
15

=

D 450,000 500,000 550,000 600,000 650,000

50,000 100,000 150,000 200,000 250,

| Synczoom | configure... For What?
= | To find and fix memory anomalies!

Minor (concurrent) 8

Major (concurrent)

GC Threshold

Objects [

50,000 100,000 150,000 200,000 250,000 300,000 350,000 400,000 450,000 500,000 550,000 600,000 650,000

0
Time [ms] 0 50,000 100,000 150,000 200,000 250,000 300,000 350,000 400,000 450,000 500,000 550,000 600,000 650,000

Time [ms]

V| Synczoom Configure...

v/| Synczoom

» Metrics

Fixing Memory Problems In Production 2

MOTIVATION

J ! U Fixing Memory Problems In Production

MOTIVATION

J ! U Fixing Memory Problems In Production

MOTIVATION

July
J ! U Fixing Memory Problems In Production

MOTIVATION

=

Jake

July
J z U Fixing Memory Problems In Production

MOTIVATION

July
J!U Fixing Memory Problems In Production 3

MOTIVATION

July
J!U Fixing Memory Problems In Production 3

MOTIVATION

July
J ! U Fixing Memory Problems In Production 3

MOTIVATION

July
J ! U Fixing Memory Problems In Production 3

MOTIVATION

July
J ! U Fixing Memory Problems In Production 3

*not actually Jake

J z U Fixing Memory Problems In Production

Why is my
program
crashing?

*not actually Jake

J z U Fixing Memory Problems In Production

Let's try a
memory
| I - ” L analysis tool!

*not actually Jake

J z U Fixing Memory Problems In Production

PROBLEM

J ! U Fixing Memory Problems In Production

PROBLEM

Objects Memory
Eden
Survivor §
Old

@
@

@
=

Survivor

o oo
= o

I
L

=

Memory [Mb]
[ST FU R U T
= o

Objects [Million]
W

0 50,000 100,000 150,000 200,000 250,000 300,000 350,000 400,000 450,000 500,000 550,000 600,000 650,000 0 50,000 100,000 150,000 200,000 250,000 300,000 350,000 400,000 450,000 500,000 550,000 600,000 650,000
Time [ms] Time [ms]

v Synczoom Configure... v/| Synczoom Configure...
Garbage Collection Pauses Survived / Died: % Objects

A O TITESTIONT

Minor
Major

Pause [ms]
Objects [%)]

0 50,000 100,000 150,000 200,000 250,000 300,000 350,000 400,000 450,000 500,000 550,000 600,000 650,000

Time [ms] 50,000 100,000 150,000 200,000 250,000 300,000 250,000 400000 450,000 500,000 550,000 600,000 650,000

Time [ms]

v Synczoom Configure... V| Synczoom

P Metrics

J z U Fixing Memory Problems In Production 5

PROBLEM

Objects

Memory

131 23 & Eden
1.2 | G Survivor
11 55 [
1.0 50
5 09 =4
= 089 =, 40
207 35
@? g
$oc) 5o
o =
O 041 20§
037 15
0.2 10
0.1 5
0 50,000 100,000 150,000 200,000 250,000 300,000 350,000 400,000 450,000 500,000 550,000 600,000 650,000 0 50,000 100,000 150,000 200,000 250,000 300,000 350,000 400,000 450,000 500,000 550,000 600,000 650,000
Time [ms] Time [ms]
v Synczoom Configure... v/| Synczoom Configure...

Minor
Major

v Synczoom

JXU

Garbage Collection Pauses

Survived / Died: % Objects

A O TITESTIONT

Time [ms]

Configure...

Objects [%]

00,000 250,000 300,000 350,000 400,000 450,000 500,000 550,000 600,000 650,000
Time [ms]

Fixing Memory Problems In Production 5

PROBLEM

Objects

Memory

Survivor

Objects [Million]

Time [ms]
v Synczoom Configure...
Garbage Collection Pauses

Eden
B . Survivor |
55 W]

Memory [Mb]
W 0 oa
=T I~]

™
o

v Synczoom Configure...

0 50,000 100,000 150,000 200,000 250,000 300,000 350,000 400,000 450,000 500,000 550,000 600,000 650,000 0 50,000 100,000 150,000 200,000 250,000 200,000 350,000 400,000 450,000 500,000 550,000 G600,000 650,000

Time [ms]

Survived / Died: % Objects

= A O T ESTIONT
Minor

Major
Minor {concurrent) ==
Major (concurrent) S

Time [ms]

v'| Synczoom Configure...

JXU

Objects [%]

Fixing Memory Problems In Production

| am new to
all of this!

PROBLEM

Objects

Survivor

Objects [Million]

Time [ms]

v Synczoom Configure...

0 50,000 100,000 150,000 200,000 250,000 300,000 350,000 400,000 450,000 500,000 550,000 600,000 650,000

Garbage Collection Pauses

= e
Minor

Major
Minor {concurre)
Maiz

What should
| look for?

v Synczoo

P Metrics

JXU

Memory
=M o Eden
G Survivor
55]
50

=

Memory [Mb]
W 0 oa
= o

™
o

0 50,000 100,000 150,000 200,000 250,000 300,000 350,000 400,000 450,000 500,000 550,000 600,000 650,000
Time [ms]

v/| Synczoom Configure...
Survived / Died: % Objects

Objects [%]

| am new to
all of this!

Fixing Memory Problems In Production 5

PROBLEM

Objects

Eden
Survivor |

Objects [Million]

0 50,000 100,000 150,000 200,000 250,000 300,000 350,000 400,000 450,000 500,000 550,000 600,000 650,000
Time [ms]

v Synczoom Configure...

Garbage Collection Pauses

A O TITESTIONT

Minor

Major

Minor (concurrentl
Maiz

What should
| look for?

v Synczoo

P Metrics

JXU

23 & Eden

Memory [Mb]
© B
LS I —1

When to use
which feature?

v Sync zoom

Survived
Died

Objects [%]

| am new to
all of this!

Fixing Memory Problems In Production 5

Objects Memory
==

PROBLEM

about memory
analysis> ...

Garbage Co!

When to use
which feature?

What ShOUId o __________________ g
| look for?

| am new to
all of this!

J z U Fixing Memory Problems In Production 5

POLL TIME

J ! U Fixing Memory Problems In Production

AN

w

N

[—

o

POLL TIME

Used a memory analysis tool Manually took a heap dump Knows what trace-based Could describe what a
before memory analysis is dominator tree is

EDummy Series1 ®Dummy Series2 = Dummy Series 3

J z U Fixing Memory Problems In Production 6

USERS NEED GUIDANCE

v:, '
0":'
T
N
00
90 F34
69 ’.
A 00000000
1L 30000000
00 ‘.
+ 89
- 80

Fixi
ixing Memory Problems In Production

MEMORY ANALYSIS 101

J ! U Fixing Memory Problems In Production

MEMORY ANALYSIS 101

J ! U Fixing Memory Problems In Production

MEMORY ANALYSIS 101

Top-down analysis

J z U Fixing Memory Problems In Production

MEMORY ANALYSIS 101

Top-down analysis

GC root —>‘

J z U Fixing Memory Problems In Production

MEMORY ANALYSIS 101

Top-down analysis

GC root

J z U Fixing Memory Problems In Production

MEMORY ANALYSIS 101

Top-down analysis

GC root

J z U Fixing Memory Problems In Production

MEMORY ANALYSIS 101

Top-down analysis

GC root

J z U Fixing Memory Problems In Production

MEMORY ANALYSIS 101

Top-down analysis

GC root

J z U Fixing Memory Problems In Production

MEMORY ANALYSIS 101

Top-down analysis

GC root

Which single object / GC root keeps
the most other objects alive?

Nl

J z U Fixing Memory Problems In Production

MEMORY ANALYSIS 101

Top-down analysis Bottom-up analysis

GC root

Which single object / GC root keeps
the most other objects alive?

Nl

J z U Fixing Memory Problems In Production 8

MEMORY ANALYSIS 101

Top-down analysis Bottom-up analysis

GC root

Which single object / GC root keeps
the most other objects alive?

Nl

J z U Fixing Memory Problems In Production 8

MEMORY ANALYSIS 101

Top-down analysis Bottom-up analysis

GC root

Which single object / GC root keeps
the most other objects alive?

Nl

J z U Fixing Memory Problems In Production 8

MEMORY ANALYSIS 101

Top-down analysis Bottom-up analysis

GC root

Which single object / GC root keeps
the most other objects alive?

Nl

J z U Fixing Memory Problems In Production 8

MEMORY ANALYSIS 101

Top-down analysis Bottom-up analysis

GC root

Which single object / GC root keeps
the most other objects alive?

Nl

J z U Fixing Memory Problems In Production 8

MEMORY ANALYSIS 101

Top-down analysis Bottom-up analysis

GC root

Which single object / GC root keeps
the most other objects alive?

Nl

J z U Fixing Memory Problems In Production 8

MEMORY ANALYSIS 101

Top-down analysis

GC root

Which single object / GC root keeps
the most other objects alive?

Nl

J z U Fixing Memory Problems In Production

Bottom-up analysis

GC root

GC root

MEMORY ANALYSIS 101

Top-down analysis Bottom-up analysis

GC root GC root GC root

Which single object / GC root keeps
the most other objects alive?

Nl

J z U Fixing Memory Problems In Production 8

MEMORY ANALYSIS 101

Top-down analysis Bottom-up analysis

GC root GC root GC root

Which single object / GC root keeps
the most other objects alive?

Nl

J z U Fixing Memory Problems In Production 8

MEMORY ANALYSIS 101

Top-down analysis Bottom-up analysis

GC root GC root GC root
1 Mio. 10,000
Which single object / GC root keeps Analyze why a certain group of
the most other objects alive? objects accumulates over time
L IVIHIO. g 1U,UUU

Nl

J z U Fixing Memory Problems In Production 8

DOMINATOR TREE

Object Reference Graph

hD-0) ©one)
(N2-(2 @’
(N3-+(D9)—De{g
(N4)-~(D4) N9
(N5)-~(D5)- N10

J ! U Fixing Memory Problems In Production

DOMINATOR TREE

Object Reference Graph Dominator Tree

L1 L2 ‘ L1 L2

-0 @’@a
@ O o1
90308 0>

R0 OO
(B CI

J z U Fixing Memory Problems In Production

&

@ ®rE
(-
&3

DOMINATOR TREE

Object Reference Graph Dominator Tree

(S CCHE
(v2)(02 @’@
(v3)~(03—(08)-(N8)
(N4)-~(D4) NO
@ D5)« N10

Dom. Tree Root

©3

©) @€ E
W s

01 (2 09 ©7) @
@M @
M) EIR9

© @

JXU

Fixing Memory Problems In Production

10

DOMINATOR TREE

Object Reference Graph Dominator Tree

Dom. Tree Root

.

Obbg

&

®

-

&

(-
ORGRRCIRCIR 4

J z U Fixing Memory Problems In Production

10

DOMINATOR TREE

Object Reference Graph Dominator Tree

L1 L2

(OACINCOR
4202 @’@
(N3~03—g-{e;

@ D4)« N9 These can be

collected too
{5-(©5- 10

J z U Fixing Memory Problems In Production

ORGRRCIRCIR 4

JXU

Fixing Memory Problems In Production

12

JXU

Thanks Markus, but that
seems like a lot to learn...

Fixing Memory Problems In Production

12

JXU

Thanks Markus, but that

seems like a lot to learn...

|

Fixing Memory Problems In Production

12

Thanks Markus, but that
seems like a lot to learn...

Okay, let us try to
Improve that in AntTracks

J ! U Fixing Memory Problems In Production 12

ANTTRACKS SYSTEM OVERVIEW

AntTracks VM
Application

Mutator phase

Mut. phase | GC phase

J ! U Fixing Memory Problems In Production

ANTTRACKS SYSTEM OVERVIEW

AntTracks VM
Application
t
o hew X()
)
(v}
e
o
o
IS
5
=
(0]
0
@
e
o
@)
O
(0]
)
®
e
o
5
=

J ! U Fixing Memory Problems In Production

ANTTRACKS SYSTEM OVERVIEW

AntTracks VM
Application
t
@ new X() ;
8
o
S
8
>
=
A
P
o
@)
O
3
e
o
5
=

J ! U Fixing Memory Problems In Production

ANTTRACKS SYSTEM OVERVIEW

AntTracks VM

Application

t

o hew X() ;\

(v}

o

: \/\
©

E N A

Trace

% file

S D
o

(0]

G

s

=

J ! U Fixing Memory Problems In Production

ANTTRACKS SYSTEM OVERVIEW

AntTracks VM
Application
t
o hew X() ;\
G
£ new Y() /?\
S \/\
©
§ v
Trace
% file
5 v
o
(0]
G
s
=

J ! U Fixing Memory Problems In Production

ANTTRACKS SYSTEM OVERVIEW

AntTracks VM
Application
t
o hew X() ;\
G
£ new Y() /?\
e revz0 IS
©
Trace
% file
g 7
O
(0]
G
s
=

J ! U Fixing Memory Problems In Production

ANTTRACKS SYSTEM OVERVIEW

AntTracks VM
Application
t
o hew X() ;\
G
£ new Y() /?\
e revz0 PISN T
©
§ new Y () ;_s‘:v
Trace
@ file
@
5 v
o
(0]
G
s
=

J ! U Fixing Memory Problems In Production

ANTTRACKS SYSTEM OVERVIEW

AntTracks VM
Application
t
o hew X() ;\
G
£ new Y() /?\
e revz0 PISN T
©
§ new Y () ;_s‘:v
Trace
s e | p | fie
5 N
o
(0]
G
s
=

J ! U Fixing Memory Problems In Production

ANTTRACKS SYSTEM OVERVIEW

AntTracks VM
Application
t

o hew X() ;\

G

£ new Y() /?\

e revz0 PISN T

©

§ new Y () ;_s‘:v
Trace

% move 5’% file

< move o

= 7

O

(0]

@

s

s

J ! U Fixing Memory Problems In Production

ANTTRACKS SYSTEM OVERVIEW

AntTracks VM
Application
t o hew X() ;\
@
£ new Y() /?\
2 o0 PISN
T
§ new Y () ;_s‘:v
Trace
% move é’ﬁ file
£ move]
8 move ;9’ v
O
(0]
@
a
=

J ! U Fixing Memory Problems In Production

ANTTRACKS SYSTEM OVERVIEW

AntTracks VM

Application

o hew X() ;\

@

£ new Y() /?\

20 IS

T

§ new Y () ;_s‘:v
Trace

% move é’ﬁ file

£ move]

8 move ;9’ v

O

o,

S__;_ new Y() ;/

s

J ! U Fixing Memory Problems In Production

ANTTRACKS SYSTEM OVERVIEW

AntTracks VM

Application

o hew X() ;\

G

£ new Y() /?\

e revz0 PISN T

©

§ new Y () ;_s‘:v
Trace

% move 5’7 file

< move o

8 move ;’/v

0]

(0]

4

=

J ! U Fixing Memory Problems In Production

ANTTRACKS SYSTEM OVERVIEW

AntTracks VM
S ellieelicn AntTracks Analyzer
o new X() /2\ Memory anomaly detection
S ew YO fé Memory leak analysis
o
S0 IS
fx \v
= 0 — Trace —>
% move 5’7 file
S move g
8 move ;’ v
9
@
£ new Y() ;/
= new Z() ;/
s

J ! U Fixing Memory Problems In Production 13

ANTTRACKS SYSTEM OVERVIEW

AntTracks VM
S ellieelicn AntTracks Analyzer
o new X() /2\ Memory anomaly detection
S ew YO fé Memory leak analysis
o
w0 IS
©
S new Y() ;‘\v Heap 1
.,
% move 5’7 file
S move g
8 move ;’ v
3
®
£ new Y() ;/
= new Z() ;/
s

J ! U Fixing Memory Problems In Production 13

ANTTRACKS SYSTEM OVERVIEW

AntTracks VM
S ellieelicn AntTracks Analyzer
o new X() /2\ Memory anomaly detection
S ew YO fé Memory leak analysis
o
5 new Z() f\\/\ o0
©
§ new Y () ;_\v H.eap‘l
.,
% move 5’7 file
S move g
8 move ;’ v
3
®
£ new Y() ;/
= new Z() ;/
s

J ! U Fixing Memory Problems In Production 13

ANTTRACKS SYSTEM OVERVIEW

AntTracks VM

AntTracks Analyzer

Memory anomaly detection
Memory leak analysis

Heap 1| |Heap 2

Application
t o hew X() ;\
Q
£ new Y() /?\
2 0 PIS
©
§ new Y() -\v
; > Trace >
% move 5’7 file
£ move i
| %/ o
0 move
@
S__;_ new Y () ;/
o new Z() ;/
=
J ! U Fixing Memory Problems In Production

13

ANTTRACKS SYSTEM OVERVIEW

AntTracks VM
S ellieelicn AntTracks Analyzer
o new X() /2\ Memory anomaly detection
S ew YO fé Memory leak analysis
o
S new Y() ;—\?(5 Heap 1| |Heap 2 Heap n
% move 5’7 file
< move o
8 ;//v
D) move
(¢)
G %
4
s

J ! U Fixing Memory Problems In Production 13

ANTTRACKS SYSTEM OVERVIEW

AntTracks VM
S ellieelicn AntTracks Analyzer
o new X() /2\ Memory anomaly detection
S ew YO fé Memory leak analysis
o
S new Y() ;—\?(5 Heap 1| |Heap 2 Heap n
% move 5’7 file
< move o
8 ;//v
D) move
(¢)
G %
4
s

J ! U Fixing Memory Problems In Production 13

ANTTRACKS SYSTEM OVERVIEW

AntTracks VM
S ellieelicn AntTracks Analyzer
o new X() /2\ Memory anomaly detection
S ew YO fé Memory leak analysis
o
S new Y() ;—\?(5 Heap 1| |Heap 2 Heap n
% move 5’7 file
S move g
8 move ;’ v
2 v
S new Y() ;/ ®
o
= new Z() ;/
s

J ! U Fixing Memory Problems In Production 13

ANTTRACKS SYSTEM OVERVIEW

AntTracks VM

AntTracks Analyzer

Memory anomaly detection
Memory leak analysis

00 00 o0
o0 00 o0
Heap 1| |Heap 2 Heap n
v
®
(©)

Application
t o hew X() ;\
Q
£ new Y() /?\
2 0 PIS
©
§ new Y() -\v
; > Trace >
% move 5’7 file
£ move i
| %/ o
0 move
@
S__;_ new Y () ;/
o new Z() ;/
=
J ! U Fixing Memory Problems In Production

13

ANTTRACKS SYSTEM OVERVIEW

AntTracks VM

AntTracks Analyzer

Memory anomaly detection
Memory leak analysis

00 00 o0

o0 00 o0

Heap 1| |Heap 2 Heap n
\.

v

®

(©)

Application
t o hew X() ;\
Q
£ new Y() /?\
2 0 PIS
©
§ new Y() -\v
; > Trace >
% move 5’7 file
S move g v
& move ;’/
@
S__;_ new Y () ;/
o new Z() ;/
=
J ! U Fixing Memory Problems In Production

13

GUIDED EXPLORATION

Application

Monitoring Tool

M

>
)|
Data

[

JXU

Fixing Memory Problems In Production

GUIDED EXPLORATION

Application Monitoring Tool

v)
o

Detection describes the task of automatically detecting a potential problem, i.e.,
a suspicious pattern.

J ! U Fixing Memory Problems In Production 14

GUIDED EXPLORATION

Application Monitoring Tool

v (1) (2) —

Detect Highlight i

— suspicious respective ¥]
pattern UI element :

Detection describes the task of automatically detecting a potential problem, i.e.,
a suspicious pattern.

Highlighting the relevant region on the Ul helps users to understand where the
automatically gained insight can be found if the view was inspected manually.

J ! U Fixing Memory Problems In Production

14

GUIDED EXPLORATION

Application Monitoring Tool

v (1) (2) J— (3)
Detect Highlight i Explain
— suspicious respective 4 i rationale
Mor[;I:ganng pattern UI element :

Detection describes the task of automatically detecting a potential problem, i.e.,
a suspicious pattern.

Highlighting the relevant region on the Ul helps users to understand where the
automatically gained insight can be found if the view was inspected manually.

Explanation of the highlighted visualization helps users to interpret it and
explains concepts that are needed for this interpretation.

J ! U Fixing Memory Problems In Production 14

GUIDED EXPLORATION

Application Monitoring Tool

(4)
Suggest

(1) (2) — (3)

\
Detect Highlight i Explain
— suspicious respective
pattern UI element

rationale

next analysis step

Detection describes the task of automatically detecting a potential problem, i.e.,
a suspicious pattern.

Highlighting the relevant region on the Ul helps users to understand where the
automatically gained insight can be found if the view was inspected manually.

Explanation of the highlighted visualization helps users to interpret it and
explains concepts that are needed for this interpretation.

Suggestions on which steps could / should be taken next make it easier for the
user to understand what operations are possible and why they might be useful.

J ! U Fixing Memory Problems In Production 14

GUIDED EXPLORATION

Application Monitoring Tool
v (1) y (hzl) " J— . (CT) (4)
Detect ighlig i Explain Suggest —
’ suspicious respective ‘ rationale = i -
pattern UI element ; nextanalysis step
Data Wi e
s G e A

Detection describes the task of automatically detecting a potential problem, i.e.,
a suspicious pattern.

Highlighting the relevant region on the Ul helps users to understand where the
automatically gained insight can be found if the view was inspected manually.

Explanation of the highlighted visualization helps users to interpret it and
explains concepts that are needed for this interpretation.

Suggestions on which steps could / should be taken next make it easier for the
user to understand what operations are possible and why they might be useful.

J ! U Fixing Memory Problems In Production 14

DEMO: EASYTRAVEL

Overview

n

Search and book a journey on the easyTravel web Start all the tiers of easyTravel and enable Preconfigured dashboards and business
frontend with a realistic multi step booking architecture and performance flaws by selecting a transactions show the full capabilities and value
process. pre-configured scenario. that dynaTrace delivers.

easyTravel provides a web portal which allows users to log in, search for journeys to various destinations, select promotional journeys directly that are offered and
to book a journey using credit card details. Additionally a Business-to-Business (B2B) web portal for travel agencies is provided where travel agencies can manage
the journeys that they offer and can review reports about made bookings.

easyTravel is a multi-tier application implemented in .Net and Java. The starting of the various tiers and the enabling/disabling of different problem pattern plugins
is done via a separate easyTravel Launcher. The Launcher allows the user to conveniently switch between different demo scenarios. Each scenario can define load
scripts and certain problem pattern plugins that are enabled. The scenarios can be modified or extended by changing an XML file. This is useful when giving demos
and allows you to focus on problem areas that are particularly relevant for a specific demo.

Download (Installer + License)

> easyTravel Demo License

> Latest easyTravel version
> easyTravel for AppMon 7.2

> easyTravel for AppMon 71

J ! U Fixing Memory Problems In Production

15

DEMO: OVERVIEW

= AntTracks Analyzer

Guidance: | Description:
(1) click at a single point in time on a chart to select it. You can then examine the heap state at that time.
(2) click at two points in time to select a time window. You can the perform heap evolution analyses over the selected window.

Charts can be zoomed in by dragging the mouse left-to-right and zoomed out by dragging the mouse right-to-left.

Charts can be dragged along the x-axis by holding down the CTRL key during mouse drag.
Right-click the chart for further options (such as image export).

Occupied memory

Memory [Mb]
N
B

15
10
5
0 20000 40000 60000 80000 100000 120000 140000 160000 130000 200.000 220000 240000 260.000 280000 300000 320000 340000 360000 380000 400000 420000 440000 450000 430000 500.000
Time [ms]

V| Synczoom Configure...
GC Overhead

"
90

Time spent in GC [%]

|
10
, P P T - I . [

0 20000 40.000 60.000 80.000 100.000 120.000 140.000 160.000 120.000 200.000 220.000 240.000 260.000 280.000 300.000 320.000 340.000 350.000 330.000 400.000 420.000 440.000 460.000 480.000 500.000
Time [ms]

V| Synczoom | configure...

» Med

No operations running

Fixing Memory Problems In Production

Tabs:
Welcome!

* Plea: a trace file.

Application - trace
Tr: i backend'

Actions:
Operations

Heap state analysis
roup and inspect the live heap obje
ntintime

16

DEMO: OVERVIEW
(1) DETECTION + (2) HIGHLIGHTING

Memory

d memory

35 |-

w
=

20

Memory [Mb]
b

] 20.000 40000 60000 80000 100.000 120.000 140.000 160.000 180.000 200.000 220.000 240000 260.000 280.000 300.000 320.000 340.000 360000 320.000 400.000 420.000 440.000 460.000 420.000 500.000
Time [ms]

v Synczoom Configure...
GC Overhead

Time spent in GC [%]

0 20000 40.000 60.000 20.000 100.000 120.000 140.000 150.000 180.000 200.000 220.000 240.000 260.000 280.000 300.000 320.000 340.000 360.000 330.000 400.000 420.000 440000 450.000 480.000 500.000
Time [ms]

v Synczoom Configure...

J z U Fixing Memory Problems In Production 17

DEMO: OVERVIEW
(3) EXPLANATION + (4) SUGGESTION

Memory

memory

©

AntTracks has detected a timeframe over which the reachable
memory is continuously growing. This is an indicator for a
memory leak.

Memory leaks are often caused by indefinitely growing data
structures - AntTracks can help you find these data structures by
calculating their growth over time.

Also, if a memory leak exists, typically objects of a few common
types accumulate over time. AntTracks can help you to identify

Potential memory leak!

Memory [Mb]
5

0 20000 40000 60000 80000 100,000 120000 140000 160.000 180000 200000 220000 240000 260000 280.0i

Time [ms]
v Synczoom Configure...

GC Overhead

= these objects by visualizing the evolution of the heap
© - -
£ compositon over time.
]
E ANALYZE OBJECT GROUP TRENDS AND DATA STRUCTURE GROWTH
E
£

0 20000 40000 60.000 80000 100.000 120.000 140.000 160.000 180.000 200.000 220.000 240.000 260.000 280.000 300.000 320.000 340.000 380.000 380.000 400.000 420.000 440.000 450.000 480.000 500.000

Time [ms]

v Synczoom Configure...

J z U Fixing Memory Problems In Production 18

DEMO:

EVOLUTION

400 Date
—_ Location
1°J° 350 HashMap$Node
S 300 [

2 char[]
3 250

£

E 2001

wn

B 1501

2

2 100

o

w
(=T

JXU

160.000 180.000 200.000 220.000 240.000 260.000 280.000 300.000 320.000 340.000 360.000 380.000 400.000 420000 440000 460000 480.000 500.000
Time [ms]

Fixing Memory Problems In Production

Type
- Date
l:l Location

l:l HashMap$Node

B charl)

Absolute Growth ¥
104.347
103.079
18.237
15.426

19

DEMO: EVOLUTION

a Date
Location
HashMap$Node
charfl

MW W
oo O o
S 2 o o

-
o
=

Objects [Thousands]
= 51
=] =1

w
=

160.000 180.000 200.000 220.000 240.000 260.000 230.000 200.000 320.000 340.000 350.000 320.000 400.000 420.000 440.000 460.000 480.000 500.000

Time [ms]

\ 4

Drill-down selection: (1) Type: Date
Allocation Site:

a Base: it=()
JdbcTimestampTypeDescriptor$TimestampMutabilityPlan::deepCopyNothull () 1

ﬁ Policy Subject:
8 S SO S ——————————————————
=)
(-]
E
|
i
A E—
<}
20

160.000 180.000 200.000 220.000 240.000 260.000 230.000 200.000 320.000 340.000 350.000 320.000 400.000 420.000 440.000 460.000 480.000 500.000

Time [ms]

4

Drill-down selection: (1) Type: Date >>= (2) Allocation Site: Base::<init>()
Call Sites:

J z U Fixing Memory Problems In Production

Type Absolute Growth ¥

[] pate 104.347
[Location 103.079
[] HashMa... 18237
B char) 15.426

Allocation Site
|:| Base:i<init>()
I:l JdbcTimestampTypeDescri...

- JourneyService:findJourne...

I:l PolicySubject::<init=()

Absolute ...¥
102.079
1.268

0

0

20

DEMO: EVOLUTION

a Date
Location
a HashMap$Node

Date objects allocated in the
roesvcce S constructor of Base are the
—— major suspects for a memory
leak since about 30% of the
overall heap growth is
accounted to them.

o
=

Objects [Thousands]
-

[=1 =1

228

160.000 180.000 200.000 220.000 240.000 260.000 280.000 300.000 320.000 340.000 3260.000 320.000 4

Time [ms]

Drill—downselection:l Inspect Who keeps them allve

Allocation

140 a Base::‘i“ir’” .. Allo(atiol‘l site Absolute ¥
5 120 -Jdb_cTimee_%tampTv_DeDescriptorSTimestamDMutabilinIan::deeDCODvNotNuII() .. [Baseu<init=() 102.079
i a Policy Subject::<init=()
@ RN - Joumeysery ddourneysl) I:l JdbcTimestampTypeDescri... 1.268
=
2 =0 - JourneyServicenfindJourne... 0
5‘ B0 | foeerememem e l:l PolicySubject:<init>() 0
Q
LT ET, | S
5 40
o
20

160.000 180.000 200.000 220.000 240.000 260.000 230.000 200.000 320.000 340.000 350.000 320.000 400.000 420.000 440.000 460.000 480.000 500.000

Time [ms]

Drill-down selection: (1) Type: Date >>= (2) Allocation Site: Base::<init>()
Call Sites:

J ! U Fixing Memory Problems In Production

DEMO: GRAPH VIEW

JXU

Static field(1

1 root pointer
references 1 obj.

Date (137.843)

Fixing Memory Problems In Production

21

DEMO: GRAPH VIEW

Static field(7

7 root pointers
reference 7 obj.

SimpleDateFormat (72) ResonrceAttributes (4)

72 obj. 4 obj.
reference reference
72 obj. 4 obj.

ileDirContextiFileResourceAttributes (4

Location (135.026) PolicySubject(1.061)

1 . 135.026 obj. 1.061 obj.
root pointer
reference reference

references 1 obj.-—-_.___135026 obj. T 1061 obj.

TypedValue (424)

4 obj.
reference
4 obj.

-

J ! U Fixing Memory Problems In Production 22

DEMO: GRAPH VIEW

135.026 Date
objects reachable

AtomicReference (1)

135.026 Date
objects reachable

ConcurrentHashMap (1

135.026 Date
lobjects reachable

ArrayList (1.071)

135.026 Date
jobjects reachable

135.026 Date

object reachable——objects reachable

TypedvValue (424)

424 Date

1.061 Date
objects reachable

JXU

Fixing Memory Problems In Production

objects reachable

Date (137.843)

Static fiel

7 Date
objects reachable

72 Date
objects reachable—

DEMO: GRAPH VIEW

class JourneyService {
Static field(1

135.026 Date

}

135.026 Date

objects reachable

135.026 Date

lobjects reachable

135.026 Date 7 Date

jobjects reachable objects reachable
1 Date 135.026 Date 1.061 Date 424 Date 72 Date

object reachable——objects reachable objects reachable objects reachable

Date (137.843)

objects reachable—

J ! U Fixing Memory Problems In Production

DEMO: GRAPH VIEW

Static field(1

135.026 Date
objects reachable

AtomicReference (1)

135.026 Date
objects reachable

ConcurrentHashMap (1

135.026 Date
objects reachable

ArrayList(1.071)

135.026 Date
jobjects reachable

Static field(1)
135.026 Date

object reachable——objects reachable

JXU

PolicySubject (1.061

class JourneyService {

static AtomicReference locationCache;

Too many ArrayList<Location>
are added here.

1.061 Date
objects reachable

TypedvValue (424)

7 Date
objects reachable

72 Date
objects reachable—

424 Date
objects reachable

Date (137.843)

Fixing Memory Problems In Production 23

ANOTHER DEMO: FINAGLE-HTTP

q{cnaissancc Suite e L e el

A modern benchmark
suite for the JVM

Documentation E5 <& Download latest

GitHub Repo @ o

J ! U Fixing Memory Problems In Production

ANOTHER DEMO: FINAGLE-HTTP

Objects Memory
Eden Eden
1,8 | I . . 45 |
TR Ol L B Ol -
R G
)
= 12 2 30
E. L | o e E- 25
[| e E 20 {f-een
o =
0 06 | [AU 15 {}oeeee
04 10
R S pa— 51
0,0 - - - - - 0 - - - - -
0 2.000 4.000 6.000 3.000 10.000 12.000 14.000 16.000 0 2.000 4.000 6.000 5.000 10.000 12.000 14.000 16.000
Time [ms] Time [ms]
v'| Synczoom v/ Synczoom
Y Configure... Y Conﬁg
Garbage Collection Pauses urvived / Died: % Objects
Minor
Major 90! Died -
Minor {concurrent)
Major {concurrent) } 801
- R
9
£ Y | O ——
@ 8
g g 501t
a 2
o g T | ——
30
20
P | ——
0 = = = = = =
1] 2.000 4.000 6.000 8.000 10.000 12.000 14.000 16.000
- 0 2.000 4.000 6.000 5.000 10.000 12.000 14.000 16.000
Time [ms])
Time [ms]

V| Synczoom Configure... v Synczoom

J z U Fixing Memory Problems In Production 25

ANOTHER DEMO: FINAGLE-HTTP

Objects

Eden
Survivor
1,6 Ol e e e e A et

-
E=N

Objects [Million]

0 2.000 4.000 6.000 8.000 10.000 12.000 14.000 16.000
Time [ms]

J z U Fixing Memory Problems In Production 26

ANOTHER DEMO: FINAGLE-HTTP

Name Collected objects
¥ Overall 16.677.450
¥ 3 0GCssurvived 16.673.869
» @ Promise$WaitQueue$Sanonss 4.152.026
» @ Promise$Monitored 4.151.660
» (@ Future$$anonfun$onSuccess$1 4.151.598
v (D FinagleHttpS$anonfun$runiteration$1$$anon$255anonfun$runisancl4.151.596
Q@ FinagleHttp$$anonfunSruniteration$1$$anon$25%anonfunsrun$i::apj4.151.596

J ! U Fixing Memory Problems In Production 27

ANOTHER DEMO: FINAGLE-HTTP

Name Collected objects
I¥ oOverall 16.677.450
¥ 3 0GCssurvived 16.673.869
» @ Promise$WaitQueue$Sanonss 4.152.026
» @ Promise$Monitored 4.151.660
» (@ Future$$anonfun$onSuccess51 4.151.598

v (D FinagleHttp5$anonfun$runiteration1%$anon$255anonfunruni$sano
Q@ FinagleHttpSanonfunS$runiteration$1$$anon$2$5anonfunSrun$i::ap

J ! U Fixing Memory Problems In Production

4.151.5586
4.151.556

ANOTHER DEMO: FINAGLE-HTTP

Name Collected objects
I¥ oOverall 16.677.450 |
v # 0GCssurvived 16.673.869 |
» @ Promise$WaitQueue$Sanonss 4.152.026
» @ Promise$Monitored 4.151.660
» (@ Future$$anonfun$onSuccess51 4.151.598
v (D FinagleHttpS$anonfun$runiteration$1$$anon$255anonfun$runisancl4.151.596
Q@ FinagleHttp$$anonfunSruniteration$1$$anon$25%anonfunsrun$i::apj4.151.596

J ! U Fixing Memory Problems In Production

27

ANOTHER DEMO: FINAGLE-HTTP

Name Collected objects
I¥ oOverall 16.677.450 |
v ¥ 0GCssurvived 16.673.869 |
» @ Promise$WaitQueue$Sanonss 4.152.026
» @ Promise$Monitored 4.151.660
» (@ Future$$anonfun$onSuccess51 4.151.598

I v (D FinagleHttp5$anonfun$runiteration1%$anon$255anonfunruni$sano

4.151.

596

Q@ FinagleHttp$$anonfunS$runiteration$1$$anon$2$5anonfunSrun$i::ap

J ! U Fixing Memory Problems In Production

4.151.

596

27

ANOTHER DEMO: FINAGLE-HTTP

Name Collected objects

I¥ oOverall 16.677.450 |
I v 3 0GCssurvived 16.673.869

» @ Promise$WaitQueue$Sanonss 4.152.026

» @ Promise$Monitored 4.151.660

» (@ Future$$anonfun$onSuccess51 4.151.598
I v (D FinagleHttpS$anonfun$runiteration$1$$anon$255anonfun$runisancl4.151.596
| Q@ FinagleHttp$$anonfunSruniteration$1$$anon$255%anonfunsrun$i::apj4.151.596

J ! U Fixing Memory Problems In Production

DEMO: FINAGLE-HTTP

val response:

Future[http.Response] = client(request)

JXU

Fixing Memory Problems In Production

28

DEMO: FINAGLE-HTTP

val response: Future[http.Response] = client(request)

for (i <- 0 until NUM REQUESTS) ({
Await.result (response.onSuccess { rep: http.Response =>

totallLength += rep.content.length
})

JXU

Fixing Memory Problems In Production

28

DEMO: FINAGLE-HTTP

val response: Future[http.Response] = client(request)

for (i <- 0 until NUM REQUESTS) ({

Await.result(response.onSuccessI{ rep: http.Response =>

totallength += rep.content.length

)

JXU

Fixing Memory Problems In Production

28

DEMO: FINAGLE-HTTP

val response: Future[http.Response] = client(request)

for (i <- 0 until NUM REQUESTS) ({

Await.result(response.onSuccessI{ rep: http.Response =>

totallength += rep.content.length

)
}

val h = { rep: http.Response =>
totalLength += rep.content.length

}

for (i <- 0 until NUM REQUESTS {

Await.result (response.onSuccess (h))

J ! U Fixing Memory Problems In Production

DEMO: FINAGLE-HTTP

val response: Future[http.Response] = client (request)

for (i <- 0 until NUM REQUESTS) ({

Await.result(response.onSuccessI{ rep: http.Response =>

totallength += rep.content.length

)
}

val h =|{ rep: http.Response =>

totalLength += rep.content.length
}

for (i <- 0 until NUM REQUESTS {

Await.result (response.onSuccess (h))

J ! U Fixing Memory Problems In Production 28

DEMO: FINAGLE-HTTP

val response: Future[http.Response] = client (request)

for (i <- 0 until NUM REQUESTS) ({

Await.result(response.onSuccessI{ rep: http.Response =>

totallength += rep.content.length

)
}

val h =|{ rep: http.Response =>

totalLength += rep.content.length
}

for (i <- 0 until NUM REQUESTS {

Await.result (response.onSuccess)

J ! U Fixing Memory Problems In Production 28

DEMO: FINAGLE-HTTP

val response: Future[http.Response] = client(request)

for (i <- 0 until NUM REQUESTS) ({

Await.result(response.onSuccessI{ rep: http.Response =>

totallength += rep.content.length

)
}

val h =|{ rep: http.Response =>

totalLength += rep.content.length
}

for (i <- 0 until NUM REQUESTS {

Await.result (response.onSuccess)

J ! U Fixing Memory Problems In Production 28

DEMO: FINAGLE-HTTP

val response: Future[http.Response] = client (request)

for (i <- 0 until NUM REQUESTS) ({

Await.result (response.onSuccess|{ re .Response =>

totalLength += re nt.length

val h =|{ rep: http.Response =>

totalLength += rep.content.length
}

for (i <- 0 until NUM REQUESTS {

Await.result (response.onSuccess)

J ! U Fixing Memory Problems In Production 28

TAKE-AWAYS

JXU

Fixing Memory Problems In Production

29

TAKE-AWAYS

Memory Analysis

Top-down
Bottom-up

Heap dumps

Trace-based

.. and 100 other things

J z U Fixing Memory Problems In Production 29

TAKE-AWAYS

Memory Analysis

Top-down
Bottom-up

Heap dumps
Trace-based

... and 100 other things

New users need
guidance to get
started faster

It is not enough to
.throw tools at them*

JXU

Fixing Memory Problems In Production

29

TAKE-AWAYS

Memory Analysis Guided Exploration

Top-down New users need Detection
Bottom-up guidance to get
started faster Highlighting
Heap dumps
It is not enough to Explanation
Trace-based .throw tools at them*
Suggestion
... and 100 other things

J z U Fixing Memory Problems In Production 29

TAKE-AWAYS

Memory Analysis Problem Guided Exploration
Top-down New users need Detection
Bottom-up guidance to get

started faster Highlighting
Heap dumps
It is not enough to Explanation
Trace-based .throw tools at them*
Suggestion
... and 100 other things

Markus Weninger
Johannes Kepler University
Linz, Austria
markus.weninger@jku.at

http://mevss.jku.at/AntTracks
http://bit.ly/weninger ssw

J z U Fixing Memory Problems In Production

29

mailto:markus.weninger@jku.at
http://mevss.jku.at/AntTracks
http://bit.ly/weninger_ssw

Additional Notes

B Some icons made by Freepik & Smashicons from https://www.flaticon.com

B Some photos made by bruce mars and Isaque Pereira from Pexels

JXU

Fixing Memory Problems In Production

30

https://www.flaticon.com/
https://www.pexels.com/@olly?utm_content=attributionCopyText&utm_medium=referral&utm_source=pexels
https://www.pexels.com/@isaque-pereira-128900?utm_content=attributionCopyText&utm_medium=referral&utm_source=pexels
https://www.pexels.com/photo/man-wearing-brown-jacket-and-using-grey-laptop-874242/?utm_content=attributionCopyText&utm_medium=referral&utm_source=pexels

