
What I’ve learned doing
chaos at Netflix

Lorin Hochstein (@lhochstein)

1

Chaos engineering should not be endorsed by the ICSE
community. Accepting a workshop pretty much
endorses the topic.

-- Reviewer, rejected ICSE'16 chaos workshop proposal

2

Some context about Netflix

3

We care about availability

4

5

SPS: Stream starts Per Second
Number of people who hit the "play" button and
successfully started

6

99.95%
7

8

Microservice architecture

9

10

Many points of failure!

11

A play in three acts
4 Act I: Chaos at Netflix when I got there

4 Act II: Chaos as experimentation

4 Act III: Lessons learned

12

Act I: Chaos at Netflix when I got there

13

14

15

Only Chaos Monkey was in
use

16

Chaos Monkey randomly
terminates instances in

production

17

18

Chaos Monkey had already
exposed single-instance
termination weaknesses

19

Latency monkey was too
dangerous

20

FIT: Failure Injection
Testing

21

Inject failure or latency at
"injection points" in code

22

Example injection point:
remote procedure call

23

Failures are scoped, not
random

24

Example: Is the bookmarks
service critical?

25

26

27

------- -------------
| api | -----> | bookmarks |
------- -------------

28

Fail calls from the "api" service to the "bookmarks"
service for account "123456"

------- -------------
| api | --×--> | bookmarks |
------- -------------

29

Many service failures look
like errors or latency

30

Great for testing with a
single device

31

Some problems only appear
when many calls fail

32

503 Service Unavailable

33

FIT supported large-scale
failure injection

34

Example: Inject failure for
10% of customer traffic

35

How much should you
inject?

36

Too much: unnecessary
customer pain

37

Too little: can't tell if
there's a vulnerability

38

39

Did this have impact?

40

Act II: Chaos as experimentation

41

42

Chaos Automation
Platform

43

Want: clear signal if failure
injection having negative

impact...

44

...on customers...

45

...and on services

46

Big idea: stickiness

47

Failure injection sessions
are sticky to users

48

49

50

Failure injection sessions
are sticky to clusters

51

52

We can do controlled
experiments!

53

54

55

How do we do this safely?

56

57

Automatic stop
(<5 minutes)

58

Business hours only

59

Limit number of
simultaneous runs

60

How do we scale this?

61

First attempt: self-serve

62

Actively engage with
multiple teams

63

Didn't see uptake after
engagements

☹

64

Second attempt:
automatically generate

experiments

65

Problem: need to
understand services to

design experiments

66

What other services do
they communicate with?

67

Tracing!

68

Which RPCs do we believe
are safe to fail?

69

Heuristics!

70

Is there a fallback?

71

Does the fallback ever get
invoked?

72

73

How much latency should
we inject?

74

75

76

77

We found vulnerabilities!

78

Still requires human effort
to interpret results

79

Experimental design limited
by our heuristics

80

Current state: hybrid
approach

81

Busy season: right before
the holidays

82

Act III: Lessons learned

83

Safety

84

It needs to be safe, or
nobody will use it

85

Safe = limited impact

86

Simplicity is prerequisite for reliability

-- Edsger Dijkstra

https://en.wikipedia.org/wiki/Edsger_W._Dijkstra#/media/File:Edsger_Wybe_Dijkstra.jpg 87

No!
88

Safety adds complexity

89

90

You better have damn good
tests around your failure

injection logic...

91

...especially if it's a shared
library in every app!

92

18:18:00,094 ERROR FitContextImpl:195 - Fit Error checking or injecting failure
java.lang.NullPointerException
 at com.netflix.fit.InjectionPointImpl.wildcardMatch(InjectionPointImpl.java:133)
 at com.netflix.fit.scenario.FitScenarioImpl.shouldImpact(FitScenarioImpl.java:45)
 at com.netflix.fit.FitContextImpl.shouldInjectFailure(FitContextImpl.java:130)
 at com.netflix.fit.FitContextImpl.checkAndInjectFailure(FitContextImpl.java:191)
 at com.netflix.fit.FitContext.checkAndInjectFailure(FitContext.java:40)
 at com.netflix.server.base.fit.FitHandler.handle(FitHandler.java:34)
 at com.netflix.server.base.NFFilter.safeDoFilter(NFFilter.java:574)
 at com.netflix.server.base.NFFilter.access$200(NFFilter.java:234)
 at com.netflix.server.base.NFFilter$3.call(NFFilter.java:482)
 at com.netflix.server.base.NFFilter$3.call(NFFilter.java:479)
 at com.netflix.lang.BindingContexts.callWithNewContext(BindingContexts.java:182)
 at com.netflix.server.base.NFFilter.doFilter(NFFilter.java:479)
 at com.google.inject.servlet.FilterChainInvocation.doFilter(FilterChainInvocation.java:82)
 at com.google.inject.servlet.ManagedFilterPipeline.dispatch(ManagedFilterPipeline.java:120)
 at com.google.inject.servlet.GuiceFilter.doFilter(GuiceFilter.java:135)
 at org.apache.catalina.core.ApplicationFilterChain.internalDoFilter(ApplicationFilterChain.java:240)
 at org.apache.catalina.core.ApplicationFilterChain.doFilter(ApplicationFilterChain.java:207)
 at org.apache.catalina.core.StandardWrapperValve.invoke(StandardWrapperValve.java:212)
 at org.apache.catalina.core.StandardContextValve.invoke(StandardContextValve.java:106)
 at org.apache.catalina.authenticator.AuthenticatorBase.invoke(AuthenticatorBase.java:502)
 at org.apache.catalina.core.StandardHostValve.invoke(StandardHostValve.java:141)

93

ChAP isn't a "black box"

94

Experimental design is a
skill

95

Work isn't done when
automated experiment

reveals a weakness

96

Confirm it's a genuine
problem

97

Communicate effectively
back to service owners

98

Lots of tuning required

https://flic.kr/p/d9sCZ 99

Length of experiment

100

Amount of traffic impacted

101

Auto-stop thresholds

102

Error counts are noisy

103

Leverage your internal
tooling ecosystem

104

ChAP is really an orchestration tool
4 Fault injection

4 Sticky routing

4 Continuous deployment

4 Tracing

4 Telemetry

4 Automated canary analysis
105

The more heterogeneous
your ecosystem, the harder

life will be

106

Java -> Node. js

107

REST -> gRPC

108

VMs -> containers

109

Unexpected benefits

110

Info for experiment
generation was useful to

service owners

111

112

Engineers created new use
cases (sticky canary)

113

114

Image credits
4 "Knobs", Ian Harding, CC-BY-NC-SA 2.0: https://
flic.kr/p/d9sCZ

4 "Portrait of Edsger W. Dijkstra", Hamilton Richards,
CC BY-SA 3.0: https://en.wikipedia.org/wiki/
Edsger_W._Dijkstra#/media/
File:EdsgerWybeDijkstra.jpg

115

