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Chaos engineering should not be endorsed by the ICSE 
community. Accepting a workshop pretty much 
endorses the topic. 

-- Reviewer, rejected ICSE'16 chaos workshop proposal
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Some context about Netflix
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We care about availability
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SPS: Stream starts Per Second
Number of people who hit the "play" button and 
successfully started 
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99.95%
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Microservice architecture
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Many points of failure!
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A play in three acts
4 Act I: Chaos at Netflix when I got there

4 Act II: Chaos as experimentation

4 Act III: Lessons learned
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Act I: Chaos at Netflix when I got there
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Only Chaos Monkey was in 
use
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Chaos Monkey randomly 
terminates instances in 

production

17



18



Chaos Monkey had already 
exposed single-instance 
termination weaknesses
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Latency monkey was too 
dangerous
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FIT: Failure Injection 
Testing
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Inject failure or latency at 
"injection points" in code
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Example injection point: 
remote procedure call
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Failures are scoped, not 
random
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Example: Is the bookmarks 
service critical?

25



26



27



-------        -------------
| api | -----> | bookmarks | 
-------        -------------  
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Fail calls from the "api" service to the "bookmarks" 
service for account "123456"

-------        -------------
| api | --×--> | bookmarks | 
-------        -------------  
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Many service failures look 
like errors or latency
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Great for testing with a 
single device
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Some problems only appear 
when many calls fail
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503 Service Unavailable
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FIT supported large-scale 
failure injection

34



Example: Inject failure for 
10% of customer traffic
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How much should you 
inject?
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Too much: unnecessary 
customer pain
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Too little: can't tell if 
there's a vulnerability
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Did this have impact?
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Act II: Chaos as experimentation
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Chaos Automation 
Platform
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Want: clear signal if failure 
injection having negative 

impact...
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...on customers...
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...and on services
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Big idea: stickiness
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Failure injection sessions 
are sticky to users
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Failure injection sessions 
are sticky to clusters
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We can do controlled 
experiments!
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How do we do this safely?
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Automatic stop
(<5 minutes)
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Business hours only
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Limit number of 
simultaneous runs
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How do we scale this?
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First attempt: self-serve
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Actively engage with 
multiple teams
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Didn't see uptake after 
engagements 

☹
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Second attempt: 
automatically generate 

experiments
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Problem: need to 
understand services to 

design experiments
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What other services do 
they communicate with?
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Tracing!

68



Which RPCs do we believe 
are safe to fail?
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Heuristics!
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Is there a fallback?
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Does the fallback ever get 
invoked?
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How much latency should 
we inject?
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We found vulnerabilities!
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Still requires human effort 
to interpret results
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Experimental design limited 
by our heuristics
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Current state: hybrid 
approach
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Busy season: right before 
the holidays
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Act III: Lessons learned
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Safety
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It needs to be safe, or 
nobody will use it
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Safe = limited impact
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Simplicity is prerequisite for reliability

-- Edsger Dijkstra

https://en.wikipedia.org/wiki/Edsger_W._Dijkstra#/media/File:Edsger_Wybe_Dijkstra.jpg 87



No!
88



Safety adds complexity
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You better have damn good 
tests around your failure 

injection logic...

91



...especially if it's a shared 
library in every app!
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18:18:00,094 ERROR FitContextImpl:195 - Fit Error checking or injecting failure
java.lang.NullPointerException
        at com.netflix.fit.InjectionPointImpl.wildcardMatch(InjectionPointImpl.java:133)
        at com.netflix.fit.scenario.FitScenarioImpl.shouldImpact(FitScenarioImpl.java:45)
        at com.netflix.fit.FitContextImpl.shouldInjectFailure(FitContextImpl.java:130)
        at com.netflix.fit.FitContextImpl.checkAndInjectFailure(FitContextImpl.java:191)
        at com.netflix.fit.FitContext.checkAndInjectFailure(FitContext.java:40)
        at com.netflix.server.base.fit.FitHandler.handle(FitHandler.java:34)
        at com.netflix.server.base.NFFilter.safeDoFilter(NFFilter.java:574)
        at com.netflix.server.base.NFFilter.access$200(NFFilter.java:234)
        at com.netflix.server.base.NFFilter$3.call(NFFilter.java:482)
        at com.netflix.server.base.NFFilter$3.call(NFFilter.java:479)
        at com.netflix.lang.BindingContexts.callWithNewContext(BindingContexts.java:182)
        at com.netflix.server.base.NFFilter.doFilter(NFFilter.java:479)
        at com.google.inject.servlet.FilterChainInvocation.doFilter(FilterChainInvocation.java:82)
        at com.google.inject.servlet.ManagedFilterPipeline.dispatch(ManagedFilterPipeline.java:120)
        at com.google.inject.servlet.GuiceFilter.doFilter(GuiceFilter.java:135)
        at org.apache.catalina.core.ApplicationFilterChain.internalDoFilter(ApplicationFilterChain.java:240)
        at org.apache.catalina.core.ApplicationFilterChain.doFilter(ApplicationFilterChain.java:207)
        at org.apache.catalina.core.StandardWrapperValve.invoke(StandardWrapperValve.java:212)
        at org.apache.catalina.core.StandardContextValve.invoke(StandardContextValve.java:106)
        at org.apache.catalina.authenticator.AuthenticatorBase.invoke(AuthenticatorBase.java:502)
        at org.apache.catalina.core.StandardHostValve.invoke(StandardHostValve.java:141)
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ChAP isn't a "black box"
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Experimental design is a 
skill
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Work isn't done when 
automated experiment 

reveals a weakness
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Confirm it's a genuine 
problem
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Communicate effectively 
back to service owners
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Lots of tuning required

https://flic.kr/p/d9sCZ 99



Length of experiment
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Amount of traffic impacted
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Auto-stop thresholds
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Error counts are noisy
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Leverage your internal 
tooling ecosystem
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ChAP is really an orchestration tool
4 Fault injection

4 Sticky routing

4 Continuous deployment

4 Tracing

4 Telemetry

4 Automated canary analysis
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The more heterogeneous 
your ecosystem, the harder 

life will be
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Java -> Node. js

107



REST -> gRPC

108



VMs -> containers
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Unexpected benefits
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Info for experiment 
generation was useful to 

service owners
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Engineers created new use 
cases (sticky canary)
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