
KTH ROYAL INSTITUTE
OF TECHNOLOGY

A Chaos Engineering System for Live Analysis and 
Falsification of Exception-handling in the JVM
Long Zhang
longz@kth.se

mailto:longz@kth.se


Contents

● Background Research Work About Chaos Machine
● The Architecture And Workflow of Chaos Machine
● Evaluation Work by 3 Real Projects
● Future Work



A Famous Book

● Examples of inputs for chaos experiments (Chapter 1, page 4):
○ Simulating the failure of an entire region or datacenter.

○ Partially deleting Kafka topics over a variety of instances to recreate an issue that occurred in production.

○ Injecting latency between services for a select percentage of traffic over a predetermined period of time.

○ Function-based chaos (runtime injection): randomly causing functions to throw exceptions.

○ Code insertion: Adding instructions to the target program and allowing fault injection to occur prior to 

certain instructions.

○ Time travel: forcing system clocks out of sync with each other.

○ Executing a routine in driver code emulating I/O errors.

○ Maxing out CPU cores on an Elasticsearch cluster.

● The opportunities for chaos experiments are boundless and may vary based on the architecture 

of your distributed system and your organization’s core business value.

https://www.oreilly.com/ideas/chaos-engineering

https://www.oreilly.com/ideas/chaos-engineering


An Excellent Talk

Level 0: Chaos Monkey
Level 1: Infrastructure Failures
Level 1.5: Network Failures
Level 2: Application Failures

Link to The Video

https://www.youtube.com/watch?v=ahU4upzOpVE&index=4&list=LLryF7ZC7tQam3vwXw5pweOg&t=0s


Building confidence in system behavior through EXPERIMENTS in RUNTIME

Error-handling behaviors
(Try-catch blocks’ resilience)

Java Virtual Machine

Javaagent, Java byte-code, ASM

A Chaos Engineering System for Live Analysis and Falsification of Exception-handling in the JVM

We Are Focusing on…:



Background Research Work

Exception Handling Analysis and Transformation Using Fault Injection 
- Study of Resilience Against Unanticipated Exceptions

Benoit Cornu, Lionel Seinturier, Martin Monperrus

● Resilience analysis by injecting exceptions during test suite execution
● Definition of two contracts for exception handling
● An empirical evaluation on 9 open sources applications

https://hal.inria.fr/hal-01062969/file/exception-analysis-resilience-ist.pdf

https://hal.inria.fr/hal-01062969/file/exception-analysis-resilience-ist.pdf


Background Research Work

● Try-catch block short-circuit testing
○ A corresponding exception at the beginning
○ Make the whole try block invalid

throw new AnnounceException();

throw new AnnounceException();

throw new InterruptedException();



The Overview of ChaosMachine

● Input
○ Arbitrary software in Java
○ Hypotheses

● Architecture
○ Monitoring sidecars
○ Perturbation Injectors
○ Chaos Controller

● Output
○ A report and monitoring logs



Hypotheses

● Resilience hypothesis
○ The observable behavior of the catch block, executed upon exception, is equivalent to 

the observable behavior of the try-block when no exception happens.

● Observability hypothesis
○ An exception caught in the catch block results in user-visible effects.

● Debug hypothesis
○ An exception caught in the catch block results in an explicit message in logs.

● Silence hypothesis
○ It fails to provide the expected behavior upon exception while providing no 

troubleshooting information whatsoever, i.e., it is neither observable nor debuggable.



Experiments And Modes

ChaosMachine performs two kinds of experiments:

● Falsification experiments

● Exploration experiments

When ChaosMachine does not introduce chaos, it is in: 

observation mode.



Monitoring sidecar

Classification Details

Try-catch blocks information ● Position: which class, which method
● Exception type: exception class full name
● Executed times in both normal mode and injection mode

Application logs ● When exception is injected, whether it will print error messages

Exit status ● UNIX code (mainly for client applications)
● HTTP response code

Generic metrics ● CPU usage
● Latency
● ...

Domain-specific metrics ● Client applications, e.g. TTorrent: whether the files can be 
downloaded

● Web applications, e.g. XWiki: HTTP response code, response body



Perturbation Injector

● Using JavaAgent to transform bytecodes

● In the beginning of each try-catch block
○ “ChaosMonkey.doChaos(...)”



Chaos Controller

● Activates or deactivates perturbation injectors (the blast radius)

● Analyzes the information recorded by the monitoring sidecars

● Generates a report



About The Report: What Can Be Learned

● Try-catch classification

○ Fragile ones

○ Possible resilient ones

● Logs handling mechanisms



 Highlights:
• A pretty good project with 1000+ stars
• A real-world production usage 
• Real production environment and traffic

Experiments On TTorrent

← Our working scope



Experiments On TTorrent

● Total try-catch blocks: 52

● Covered by workload: 27

● Possible resilient ones: 6

● Silent ones: 3



Experiments On TTorrent

● A worst case for developers (But a best case for us :D)

● Successfully injected the exception

● Didn’t capture error info in application logs

● Failed to download the files

● The application is stalled

No one knows what's happening here!



Experiments On XWiki (And Broadleaf Commerce)

● Step 1: production traffic recording

● Step 2+3: user traffic replaying
● Step 4: analyzing informationRecording/replaying traffic: goreplay.org

https://goreplay.org/


● Total try-catch blocks: 1567

● Covered by workload: 268

● Possible resilient ones: 7

● Silent ones: 23

Experiments On XWiki (And Broadleaf Commerce)



Our Contributions

● The conceptual foundations of chaos engineering in the context of 

exception-handling in Java

● A novel system, called CHAOSMACHINE, that assesses 

exception-handling capabilities in production

● An empirical evaluation of CHAOSMACHINE on 3 real-world Java 

systems totaling 630k line of codes, containing 339 try-catch blocks 

executed by the considered production traffic



Future Work

● More advanced perturbation strategies

● Perturbation injection + failure-obliviousness



Our Contributions

● Paper available at arXiv

● Source-code available at GitHub

https://arxiv.org/abs/1805.05246
https://github.com/KTH/chaos-engineering-research


Thanks for listening!
Long Zhang
longz@kth.se

mailto:longz@kth.se

