KTH ROYAL INSTITUTE
OF TECHNOLOGY

A Chaos Engineering System for Live Analysis and
Falsification of Exception-handling in the JVM

Long Zhang

longz@kth.se

mailto:longz@kth.se

Contents

Background Research Work About Chaos Machine
The Architecture And Workflow of Chaos Machine
Evaluation Work by 3 Real Projects

Future Work

OREILLY

Chaos
Engineering

R
&5 -~
Casey Rosenthal, Lorin Hochstein,
Aaron Blohowiak, Nora Jones

& Ali Basiri

A Famous Book

e Examples of inputs for chaos experiments (Chapter 1, page 4):

O

O

O

O

O

O

Simulating the failure of an entire region or datacenter.

Partially deleting Kafka topics over a variety of instances to recreate an issue that occurred in production.
Injecting latency between services for a select percentage of traffic over a predetermined period of time.
Function-based chaos (runtime injection): randomly causing functions to throw exceptions.

Code insertion: Adding instructions to the target program and allowing fault injection to occur prior to
certain instructions.

Time travel: forcing system clocks out of sync with each other.

Executing a routine in driver code emulating 1/O errors.

Maxing out CPU cores on an Elasticsearch cluster.

e The opportunities for chaos experiments are boundless and may vary based on the architecture

of your distributed system and your organization’s core business value.

https://www.oreilly.com/ideas/chaos-engineering

https://www.oreilly.com/ideas/chaos-engineering

An Excellent Talk

UP NEXT | 9:30 AM

Level 0: Chaos Monkey

Level 1: Infrastructure Failures
Level 1.5: Network Failures
Level 2: Application Failures

Kolton Andrus

CEO & Co-Founder, Gremlin

https://www.youtube.com/watch?v=ahU4upzOpVE&index=4&list=LLryF7ZC7tQam3vwXw5pweOg&t=0s

We Are Focusing on...:

Building confidence in system behavior through EXPERIMENTS in RUNTIME

\
Javaagent, Java byte-code, ASM

Java Virtual Machine

Error-handling behaviors
(Try-catch blocks’ resilience)

A Chaos Engineering System for Live Analysis and Falsification of Exception-handling in the JVM

Background Research Work

Exception Handling Analysis and Transformation Using Fault Injection

- Study of Resilience Against Unanticipated Exceptions
Benoit Cornu, Lionel Seinturier, Martin Monperrus

e Resilience analysis by injecting exceptions during test suite execution
e Definition of two contracts for exception handling
e An empirical evaluation on 9 open sources applications

https://hal.inria.fr/hal-01062969/file/exception-analysis-resilience-ist.pdf

https://hal.inria.fr/hal-01062969/file/exception-analysis-resilience-ist.pdf

Background Research Work

e Try-catch block short-circuit testing
o A corresponding exception at the beginning
o Make the whole try block invalid

Java Virtual Machine 1

Service 1

{

Perturbation

Monitoring
Injector

Sidecar

‘<.

Production traffic ™
=

]

Java Virtual Machine 2

Service 2

{

Perturbation

Monitoring
Injector

Sidecar

-

]

Java Virtual Machine 3

Service 3

X

|

Perturbation

Monitoring
Injector

Sidecar

--3{ Chaos Controller

End Users

[y

| Application & Chaos logs

! <«<—> Normal Application Communication

. Chaos Perturbation Commands

B b
Report E.

Developer Team

Chaos Machine Report
Monitoring Information

Fig. 1. The components of CHAOSMACHINE

The Overview of ChaosMachine

Input
o Arbitrary software in Java
o Hypotheses

e Architecture

o Monitoring sidecars
o Perturbation Injectors
o Chaos Controller

e Output

o A report and monitoring logs

Hypotheses

e Resilience hypothesis

o The observable behavior of the catch block, executed upon exception, is equivalent to
the observable behavior of the try-block when no exception happens.

e Observability hypothesis

o An exception caught in the catch block results in user-visible effects.

e Debug hypothesis

o An exception caught in the catch block results in an explicit message in logs.

e Silence hypothesis

o It fails to provide the expected behavior upon exception while providing no
troubleshooting information whatsoever, i.e., it is neither observable nor debuggable.

Experiments And Modes

ChaosMachine performs two kinds of experiments:

e Falsification experiments

e Exploration experiments

When ChaosMachine does not introduce chaos, it is in:

observation mode.

Monitoring sidecar

Classification Details

Try-catch blocks information Y Becenton e exception s name

) Executed times in both normal mode and injection mode

e When exception is injected, whether it will print error messages

Application logs

EXIt status : g?_'l_ﬁﬁzcsizo(rr‘rl:;rgg;gr client applications)
Generic metrics s CRUusage

. . . ° Client applications, e.g. TTorrent: whether the files can be
Domain-specific metrics downloaded

° Web applications, e.g. XWiki: HTTP response code, response body

Perturbation Injector

e Using JavaAgent to transform bytecodes

e In the beginning of each try-catch block
o “ChaosMonkey.doChaos(...)”

Chaos Controller

e Activates or deactivates perturbation injectors (the blast radius)

e Analyzes the information recorded by the monitoring sidecars

e (Generates a report

TABLE 1

INTERPLAY BETWEEN THE 3 COMPONENTS AND THE 3 MODES OF CHAOSMACHINE

Observation Mode

Exploration Mode

Falsification Mode

Monitoring Sidecar

Monitors all the relevant execution in-
formation

Monitors how the system reacts accord-
ing to a perturbation

Monitors whether an hypothesis is fal-
sified

Perturbation Injector

Not active

Injects a specific perturbation

Injects a specific perturbation

Chaos Controller

Deactivate all the perturbation injectors
to keep the system running as usual

Controls perturbation injectors to con-
duct a sequence of chaos experiments
so as to infer new hypotheses

Controls perturbation injectors accord-
ing to a specific hypothesis

About The Report: What Can Be Learned

e Try-catch classification
o Fragile ones
o Possible resilient ones

e Logs handling mechanisms

Experiments On TTorrent

E‘j ubuntu-14.04.5-server-i 386.torrent
=) (ubuntu-14.04.5-server-i386.is0)

A

l I L L Highlights:
' NS A « A pretty good project with 1000+ stars

7 .
Seeder 2 (client),/ Seeder ... (client)

' * A real-world production usage

|
/
><
~

Seeder 1 (client)

/
/
~

* Real production environment and traffic
‘.ﬂ . — Our working scope

Experiments On TTorrent

TABLE 11
THE RESULTS OF CHAOS EXPERIMENTATION WITH EXCEPTION INJECTION ON 27 TRY-CATCH BLOCKS IN THE TTORRENT BITTORRENT CLIENT

Try-catch block information Execution Logged Downl. Exit status System metrics RH OH DH SH
Anal./Expl.
BE Value/getBytes,ClassCastException,0 41/1 yes no crashed - X X
BE Value/getNumber,ClassCastException,0 15/1 yes no crashed - X X
BE Value/getString,ClassCastException,0 37/1 yes no crashed - X X
BE Value/getString, UnsupportedEncodingException, 1 A7 yes no crashed - X X
ClientMain/main,CmdLineParser$OptionException,0 171 yes no crashed - X
ClientMain/main,Exception, 1 1/1 yes no crashed = .x Tota I t _CatC h b I OC kS . 52
Announce/run,AnnounceException,0 1/60 yes no stalled - X .
Announce/run,InterruptedException,2 17760 no yes normally more threads >4
Announce/run,InterruptedException,3 1/1 no yes normally no diff X
Announce/run,AnnounceException,4 1/1 yes yes normally no diff X
Announce/stop, InterruptedException,0 1/1 no yes normally no diff X . C d b kI d L] 2 7
ConnectionHandler/run,SocketTimeoutException,0 1290/ 1030 no yes normally no diff p.¢ Ove re y WO r Oa .
ConnectionHandler/run,IOException, 1 1290/ 1 yes yes stalled higher cpu %
ConnectionHandler/run,InterruptedException,2 1290/ 2 yes no stalled no diff X
ConnectionHandler/stop, InterruptedException,0 1/1 no yes normally no diff X
ConnectionHandler$ConnectorTask/run,Exception,0 50/ 50 yes no stalled no diff u LY B .
Handshake/craft,UnsupportedEncodingException,0 50/ 48 yes no stalled no diff . P OS S I b I e reS I I I e nt O n e S 6
PeerExchange/send,InterruptedException,0 90763 /210 no no stalled no diff -
PeerExchange/stop, InterruptedException,0 46 / 44 no yes normally no diff X
PeerExchange$Outgoing Thread/run,InterruptedException,0 90805 / no no stalled higher cpu X X
32984841 .
PeerExchange$Outgoing Thread/run,InterruptedException, 1 90763 /288 no no stalled no diff . S I I e nt O n eS . 3
PeerExchange$Outgoing Thread/run,JOException,2 90805 / 43 yes no stalled no diff .
PeerExchange$Outgoing Thread/run,JOException,3 90763 / 46 yes no stalled no diff X
Piece/validate,NoSuchAlgorithmException,0 2564 / 5427 yes no stalled higher cpu X
HTTPAnnounceRespMessage/parse,InvalidBEncodingException,0 3/30 yes no stalled no diff X
HTTPAnnounceRespMessage/parse,InvalidBEncodingException, 1 3/30 yes no stalled no diff X
HTTPAnnounceResponseMessage/parse,UnknownHostException,2 3 / 30 yes no stalled no diff X
total: 27/52 460626 / 18/27 8/27 7/27 427 627 727 2027 3/27

32992950

Experiments On TTorrent
e A worst case for developers (But a best case for us :D)

Successfully injected the exception
Didn’t capture error info in application logs
Failed to download the files

The application is stalled

No one knows what's happening here!

Experiments On XWIiKki (And Broadleaf Commerce)

b e e Step 1: production traffic recording

- 1 °

N Replay\ TABLE II

00 < Traffic logs Middleware 3 XWIKI'S USER TRAFFIC RECORDS FOR REPLAYING AND TESTING
Recording 1.
Middleware

eeeeee 3
Request functionalities Type Quantity
) Directly downloading files, like .css, .js, .png ... GET 80
» Rendering pages or fetching content parts obL 148
; ’ POST 18
@ Logging in, adding comments, updating user data ~ POST 4

XWiki server 4,
\ Logging out GET 1
Datab total GET 229
atabase ;
Business Chaos logs Response POST 22
logs logs

i e Step 2+3: user traffic replaying
Recording/replaying traffic: goreplay.org e Step 4: analyzing information

https://goreplay.org/

Experiments On XWIiKki (And Broadleaf Commerce)

TABLE III
RESULTS ON CHAOS EXPERIMENTATION ON 268 TRY-CATCH BLOCKS IN
XWIKI COVERED BY THE CONSIDERED WORKLOAD

Packages Covered Executions in RH OH DH SH
Anal. / Expl.
org/xwiki/a* 1 273/273 o o 1 o e Jotal try-catch blocks: 1567
org/xwiki/c* 20 112968 / 119544 0 6 20 0
org/xwiki/d* 2 855/1398 0 0 2 0
org/xwiki/e* 11 20882 /99204 0 1 11 0 .
org/xwiki/f* 23 448137222 o 0 23 0 @ Cove red by WO rkload . 268
org/xwiki/i* 8 1142/280 0 0 8 0
org/xwiki/l* 12 295530/ 73048 0 1 12 0
org/xwiki/m* 9 38360 /37739 0 1 9 0 . i t
org/xwiki/n* 10 62 /190837 0 0 8 2 P bI I - 7
org/xwiki/o* 2 43753 /68154 0 0 2 0 ¢ OSsSiIDble resilient ones:
org/xwiki/p* 4 5403 /3075 0 0 4 0
org/xwiki/q* 3 262/142 0 0 3 0 .
org/xwiki/r* 93 1137420/272944 5 7 70 14 S I t - 23
org/xwiki/s* 15 20522 /31826 2 5] 15 0 ® I e n O n eS -
org/xwiki/t* 2 83/81 0 0 2 0
org/xwiki/u* 20 13795/ 6229 0 8 16 1
org/xwiki/v¥* 5 3201/831 0 2 5 0
org/xwiki/w* 21 2526/ 3140 0 2, 16 5
org/xwiki/x* 7 890/ 580 0 0 6 1
Total 268/1567 1742740 /909547 7 33 233 23

Our Contributions

e The conceptual foundations of chaos engineering in the context of
exception-handling in Java

e A novel system, called CHAOSMACHINE, that assesses
exception-handling capabilities in production

e An empirical evaluation of CHAOSMACHINE on 3 real-world Java
systems totaling 630k line of codes, containing 339 try-catch blocks

executed by the considered production traffic

Future Work

e More advanced perturbation strategies

e Perturbation injection + failure-obliviousness

ks

Our Contributions

[KTH/ chaos-engineering-research @unwatch~ 2 Unstar 11 YFork 1
<> Code Issues 0 Pull requests 0 Insights

Chaos engineering systems invented at KTH Royal Institute of Technology

chaos-engineering jvm bytecode exception-handling
D 42 commits ¥ 1 branch © 0 releases 22 2 contributors dMIT
Branch: master v New pull request Create new file Upload files Find file Clone or download ~
B8 giuckzhang Add TripleAgent Latest commit bas1fc2 a day ago
I chaosmachine redesigned repo structure aday ago
I tripleagent add tripleagent into the research repo aday ago
B .gitignore add tripleagent into the research repo aday ago
E) LICENSE update ignore and unit line endings to linux-style 9 months ago
README.md Add TripleAgent aday ago
README.md s

Chaos engineering systems invented at KTH Royal

ool e Paper available at arXiv

Every tool is organized as a separate folder in this repo, with a detailed README file inside. Here's the basic information:

Chaos Machine

"]
Chaos machine is a tool to do chaos engineering on the JVM level using bytecode. In particular, it concentrates on analyzing . S O u r‘ e —‘ O d e a Va I | a b I e at G It H u b

the error-handling ability of each try-catch block involved in the application.

More details in the Arxiv paper: A Chaos Engineering System for Live Analysis and Falsification of Exception-handling in the

https://arxiv.org/abs/1805.05246
https://github.com/KTH/chaos-engineering-research

Thanks for listening!

Long Zhang

longz@kth.se

mailto:longz@kth.se

