Software Diversity

1 concept and 10 papers | Love

Benoit Baudry
Professor, KTH

Software Research Centre

Risks of monoculture
- No specialization

- Same bugs

- Same vulnerabilities

Software diversity
mitigates the risks of
software monoculture
with diverse behaviors

Software diversity

SRSLSIRSRLISSRRIRLMLL L T 1 E L1]

ration inspired by G. Berry. « Ala

chasse aux bugs, la maladie du certain » (8 juin 2011

»

Software diversification
HEEEEREEEE

T
SRSLSLRSRLLSSRRLRL
EEEEEEEENN
HEEEEEEENEN

Software diversification

SRSLSLRSRLLSSRRIRLIA 1 VL L L BT

variant

Software diversification

g1 1 1| 1Al
mENEEEE-E
SRSLSLRSRLLSSRRLRL ll-lllllll_,_,__,:__
II"I II

II--IIII
HEEEEEEN-
Ilhn"llllll
EEERIEEEEE

Software diversification

SRSLSLRSRLLSSRRLRLII LT
II"I

SRSLSLSSRLLSSRRLRL .‘ld- CEETD
..--.... o

HEEEEEEN -
TR
EEEE NN

g A RIGHT LANE '.x—.—-—
MUST

= A - ,’ga
—_ %URN RIGHT P,m.‘

| r__‘__\nmm nwh 2
Software dlver5|f|cat|on

exploits the extraordinary
resources of runtimes,
languages and randomness

e

e ’

~ —_—

A journey into software diversity

Precursors

*S. Yau. Design of self-checking software. 1975.

* Brian Randell. System structure for software fault
tolerance. 1975.

* A. Avizienis. The N-version approach to fault-tolerant
1985.

Pioneers of automatic diversification

* Fred Cohen, 1993

* Increase the costs of attacks
* Program transformations
* Pioneer: reordering, garbage insertion, function mix

* Stephanie Forrest, 1997

* Biological inspiration

* Avoid unnecessary consistency

* Pioneer : NOP insertion, random memory padding
* Prototype of randomized stack layout

Fred Cohen. Operating system protection through program evolution. 1993.
Stephanie Forrest, Anil Somayaji, David Ackley. Building Diverse Computer Systems. 1997.

17

Address space layout randomization

* PaX Linux kernel patch. 2000.

e Separate readable data pages and executable
code pages

* Address space layout randomization: heap,
stack and libraries

* ASLR is now in all main Oss
* Mitigates ret-to-libc and stack smashing

OpenOffice.org Writer

https://en.wikipedia.org/wiki/PaX 18
Shacham, H. and colleagues. On the Effectiveness of Address-Space Randomization. 2004

NOP Insertion

* Compiler-based diversification

 Randomly insertr NOPs in the generated binary
* One different binary at each compilation

* Mitigates return oriented programming

Program code

i | |
MOV [ECX], EDX| ADD EBX, EAX |

32 1 33 34 | 35
BeforeNOP ' [T aa |l 111 a1 | ~2 |
Insertion . 8.9 11 O.l c3 |
' | Gadget: ADC [ECX], EAX ; RET
i Displacement of instruction 35
‘_ ___
! Displacement of instruction 33
e T >
Insertion e~ N—ee e — '
32 33 34 39 56 57 58

Homescau and colleagues. Profile-guided Automated Software Diversity. 2013.

Gadget: Removed

59

01

C3

60

61

19

Good enough software

* Functionality removal, computation discard
* Mitigate homogeneous performance

Instrumentation Perforation
source code —é instrumented binary running program
| | | >
Compile In memory Execution

for(i=0;i<n;i++){...}

g

for(i=0;i<n;i+=2){...} .

Rinard. Obtaining and Reasoning About Good Enough Software. 2012.

Mutational robustness

* Source can be randomly transformed with speculative
transformations

* Empirical evidence of software mutational robustness
* Mitigates risks of bug and vulnerability monoculture

21
Software mutational robustness. 2013.

Schulte and colleagues.

Moving Target Defenses

* Runtime evolution + diversity

Memory Processor Network
Hardware

Okhravi and colleagues. Finding Focus in the Blur of Moving-Target Techniques. 2014

22

Conclusion

* The forces of monoculture are strong

e Technical standards (e.g., JSON)
e Socio-technical networks (e.g., Github)
* The penetration of software in society (e.g., Wordpress)

* Extraordinary challenges to fuel software diversity
 Remodel the natural diversity of code strata
* Embrace evolution with DevOps
* Explore the space of short-lived data and programs

23

