
111

Chaos Engineering Day
Stockholm edition, 2017

Organization: Martin Monperrus, KTH

http://chaos.conf.kth.se/

http://chaos.conf.kth.se/

222

Chaos Engineering Day?

● Goals:
● Meet: Know each other
● Learn: High quality technical presentations
● Plan: Next collaborations in research, industry

and open-source
● Worldwide

● San Francisco (Nov 4 2015 & 2017), Seattle
(Aug 26 2016)

● Paris (Nov 24 2017), London (Dec 12 17)

333

Presentation of each participant

444

Key Statistics
● 1 keynote, 5 presentations
● 43 participants (and counting...)

● from industry, from academia
● From many countries: Sweden,

Norway, Spain, France, Germany,
Denmark

555

Program (morning)
● Presentations are allocated 20 minutes (incl. questions).

● Agenda slack and interactions is builtin

 9:15-9:45 Workshop introduction (Martin Monperrus, KTH)

 9:45-10:45 Keynote: "Let it crash" (Joe Armstrong, father of
Erlang)

 10:45-11:10 Coffee Break

 11:10-11:30 "Lineages as a first-class construct for fault-tolerant
distributed programming" (Philipp Haller, KTH),

 11:30-11:50 "Configuration testing for better DevOps" (Anatoly
Vasilevskiy, SINTEF)

 12:00-13:15: Lunch (free for registered participants)

 13:15-14:00: Parallel sessions (email, walk)

666

Lunch
● 12:00 – 13:15 (10 minutes walk)
● 13:15 – 14:00 Email session and walk session

777

Program (afternoon)

 14:00-14:20 "Continuous Diversification in a
DevOps pipeline" (Nicolas Harrand, Univ Rennes)
 14:20-14:40 "High Frequency Chaos Engineering"
(Mats Jonsson, SAAB)
 14:40-15:00 "Correctness Attraction: Runtime
Perturbation for Full Correctness" (B. Danglot, Inria)
 15:00-15:30 Coffee break
 15:30-16:15 Breakout Group Discussion
 16:15-16:30 Presentation of group results
 16:30-16:45 Closing

888

Wifi

● Network eduroam: your institutional
login

● Guest Logins, see sheet

999

Acknowledgements

● Presenters
● Participants
● KTH CASTOR Center for Software

Research for funding
● Sandhya Hagelin (KTH Service) for

the organization

101010

Introduction to
Chaos Engineering

111111

Chaos Engineering Examples
● Chaos monkey:

● Automatically and randomly shutdown
servers

● Verifies that the system withstand crashes
● Abstract over a wide range of problems

(HW, OS, SW)
● Gameday exercise

● Simulates a network partition isolating a
whole data center

● Planned and monitored

121212

Chaos Engineering Definitions
● “Chaos Engineering is the discipline of

experimenting on a distributed system in
order to build confidence in the system's
capability to withstand turbulent
conditions in production”
(principlesofchaos.org)

● “Chaos Engineering is the discipline of
experimenting on a software system in
production in order to verify a property”

131313

Chaos Engineering Definition

“Chaos Engineering is the discipline of
perturbing a software system in
production for fun and profit”

(working definition for today)

141414

Chaos Engineering Related Work

● The scientific method
● Popper’s falsifiability
● Ghost planes (1975!)

151515

Chaos Engineering Related Work

● Randomization & software diversity
● Testing;

● In-the-field testing
● Stress testing

● Devops:
● Canari testing / Rolling deployment
● A/B testing
● Disaster recovery

161616

Chaos Engineering Methodology

● Invariant: measurable output that
indicates normal behavior.

● Failure model: reflect real world events
like crash.

● Hypothesis: control group and
experimental group.

● Try to falsify the hypothesis by looking for
a difference in steady state between the
control group and the experimental group.

171717

Chaos Engineering Research
● Perturbation models

● Coarse-grain: crash
● Fine-grain: nullify a single variable
● Human based

● Perturbation gains & costs
● Chaos monkey: zero cost

● Perturbation controller
● Targeted perturbations
● Use of undo? Use of isolation?
● Maximize the gained knowledge

181818

Chaos engineering and open-source
● Netflix: Simianarmy (Java) and chaosmonkey

(Go)
● jepsen-io/jepsen
● Kube-monkey (chaos for Kubernetes)
● Pumba (chaos for Docker)
● os-faults & destroystack (openstack)
● faulterl: Erlang library-level fault injection
● See also list at

https://www.oreilly.com/ideas/chaos-
engineering

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

