-

Université Ifornatiques 7 matbémetiqves

de Lille zva—
£ TecimoLosies

Correctness Attraction: A Study of Stabllltyvv
of Software Behavior Under Runtime

Perturbation

Benjamin DANGLOT
December 6t 2017

benjamin.danglot@inria.fr

Kungliga Tekniska Hogskolan (KTH) - European Chaos Engineering Day

1/16

Introduction

Dijkstra:
“the smallest possible perturbations — i.e. changes of a single
bit — can have the most drastic consequences.”

2/16

Goal: Explore The Perturbability Envelop of Software

RQ: How does Software behave under perturbation?

3/16

Goal: Explore The Perturbability Envelop of Software

RQ: How does Software behave under perturbation?

Perturbation is a change that occurs runtime (# mutant).

3/16

Goal: Explore The Perturbability Envelop of Software

RQ: How does Software behave under perturbation?

Perturbation is a change that occurs runtime (# mutant).

Attract Protocol: Explore the perturbability of Software:

3/16

Goal: Explore The Perturbability Envelop of Software

RQ: How does Software behave under perturbation?
Perturbation is a change that occurs runtime (# mutant).

Attract Protocol: Explore the perturbability of Software:

e Exploring exhaustively

3/16

Goal: Explore The Perturbability Envelop of Software

RQ: How does Software behave under perturbation?

Perturbation is a change that occurs runtime (# mutant).

Attract Protocol: Explore the perturbability of Software:

e Exploring exhaustively

e Using perfect oracle

3/16

The Attract Protocol

The Attract Protocol: Example

input: bound = 8
Iteration ‘ acc i
1 2 8
blic int function(int bound) { 2 3 7
public int function(int boun
int acc = 0; 3 3 6
int mask = 0x02;
for (int i = bound ; 1 >0 ; i--) { B g 2
acc |= i >> mask; 5 3 4
}
return acc; 6 3 3
} 7 3 2
8 3 1

output: acc = 3

4/16

The Attract Protocol: Example

input: bound = 8

1 2 8
blic int f int bound) { 2 £ /
ublic int fungZionfint boun

P int acc /0; 3 3 6

int mas ;
for (bound ; i >0 ; i--) { 4 3 5
acc |= i >> mask; 5 3 4

}

return acc; 6 3 3
} 7 3 2
8 3 1
output: acc = 3

4/16

The Attract Protocol: Perturbation Points

acc |= 1 >> mask;

5/16

The Attract Protocol: Perturbation Points

acc |= 1 >> mask;

acc |=|1|>> mask;

5/16

The Attract Protocol: Perturbation Points

acc |= 1 >> mask;

acc |=|1|>> mask;

acc |= p(i, 1) >> mask;

5/16

The Attract Protocol: Perturbation Points

acc |= 1 >> mask;
acc |=|1|>> mask;
acc |= p(i, 1) >> mask;

public int p(int integer, int id) {
if (mustBePerturbed(id)) {
return integer + 1;
} else {
return integer;
}

5/16

The Attract Protocol: Perturbed Execution

input: bound = 8

c
o
public int function(int bound) { I*(:u
int acc = 0; o) . g
int mask = 0x02; x| acc 1 | acc 1
for (int i = bound ; i >0 ; i--) {
acc |= >> mask; 112 8|2 8
return acc; 213 712 7 41
}
313 6|3 6
4 |3 513 5
513 413 4
6|3 313 3
713 2|3 2
8|3 1|3 1

output: acc =3
6/16

The Attract Protocol: Perturbed Execution

input: bound = 8

c
o
public int function(int bound) { I*(:u
int acc = 0; o) . g
int mask = 0x02; x| acc 1 | acc 1
for (int i = bound ; i >0 ; i--) {
acc |= >> mask; 112 8|2 8
return acc; 213 712 7 41
}
313 6|3 6
4 |3 513 5
513 413 4
6|3 313 3
713 2|3 2
8|3 1|3 1

output: acc =3
6/16

The Attract Protocol: Applied On The Example

Inputs : bound € [0; 100]

4950 perturbed executions
09.90% correctness ratio

5 failed executions (0.1%)

7/16

The Attract Protocol: Exhaustive Exploration

Reference Execution

Perturbed Execution 1

Perturbed Execution 2

It. | acc i acc i acc i
1 2 8 2 8+1 2 8
2 3 7 3 7 2 741
3 3 6 3 6 3 6
4 3 5 3 5 3 5
5 3 4 3 4 3 4
6 3 3 3 3 3 3
7 3 2 3 2 3 2
8| @ 1 3@ 1 @ 1

output: acc = 3

output: acc =3

output: acc = 3

Perturbed Execution 5

acc i

2 8

3 7

3 6

3 5

1 441
1 3

1 2

D 1

output: acc =1

8/16

The Attract Protocol: Perfect Oracle

Reference Execution

Perturbed Execution 1

Perturbed Execution 2

It. | acc i acc i acc i
1 2 8 2 8+1 2 8
2 3 7 3 7 2 741
3 3 6 3 6 3 6
4 3 5 3 5 3 5
5 3 4 3 4 3 4
6 3 3 3 3 3 3
7 3 2 3 2 3 2
8| @ 1 3@ 1 @ 1

output: acc = 3

output: acc = 3

output: acc = 3

Perturbed Execution 5

acc i

2 8

3 7

3 6

3 5

1 441
1 3

1 2

D 1

output: acc =1

8/16

The Attract Protocol: Core Algorithm

1 instrument(prog);

2 for each input i in | do

3 n[pp, i] < runWithoutPerturbation(prog, i)Vpp € prog;
4 for each perturbation point pp in prog do

5 for j =0, to n[pp, i] do

6 o < runWithPerturbationAt(prog, i, pp, j);
7 if oracle.assert(i, 0) then

8 ‘ success <— success + 1;

9 else

10 ‘ failure < failure + 1;

11 end

12 end

13 end

14 end 9/16

Experiment

Experiment: PONE

—+1 on every integer expression for each call of each perturbation point

10/16

Experiment: PONE

—+1 on every integer expression for each call of each perturbation point

Subject Ngg —Search space— | correctness ratio
quicksort | 41 151444 77.6 %
zip 19 38840 76.09 %
sudoku 89 08211 68.8 %
md5 164 | 237680 — 29.67 %

rsa 117 | 2576 — 5497 %

rcd 115 | 165140 — 38.04 %

canny 450 | 616161 94.55 %
lcs 79 231786 89.93 %
laguerre | 72 423454 90.64 %
linreg 75 543720 —— 47.88 %

total 1221 | 2509012 66.817 %

10/16

RQ: How does Software behave under perturbation?

11/16

RQ: How does Software behave under perturbation?

Answer:

e In 1676446(66.817%) of 2509012 perturbed executions,
the final output is perfectly correct.

e Software are able to recover from perturbation, and
produce the perfect output.

11/16

Answer: Correctness Attraction

correctness
wreckage

12/16

Demo

Demo: What it does?

First fine-grained chaos inside a “production” application.

e Explore the perturbability of a web application
e Running an instrumented version of a e-commerce app
e At each request, one perturbation point is enabled

e The perturbation is +1 on integer expressions

13/16

Demo: screen

WHILE THEY LAST WHILE THEY LAST

»SHIRT SPECIAL ...SHIRT SPECIAL

¢ x[c
Chrome s being controle . by automtes dtestsoftware,

The page you seek is not
found!

14/16

Future Works

e Future RQ1: How does the “strength” of the perturbation
impact the correctness ratio: i.e. +1000 instead of +1, or
50% of probability to enable each perturbation point? =
increase the Chaos.

e Future RQ2: How does “production” Software behave under
the Attract protocol?

e Future RQ3: Does the correctness ratio can be used as proxy
to measure the “Antifragility” / “Resiliency” of Software?

e Future RQ4: Could we engineer our Software to increase the
Correctness and so increase the “Resiliency”?

15/16

Conclusion

Conclusion

&, e Exhaustive Exploration
\° e Perfect Oracle

correctness

wreckage
Subject
correctness ratio
quicksort 776 %
zip 76.09 % [E ST . [E ST .
sudoku 68.8 %

—_ 0,
mds U SHIRT SPECIAL SHIRT SPECIAL
rsa — 5497 % 4 152 A44a 1770 ¥ i SEE
rcd — 38.04 %
canny 0455 % -
les — 8993 % The page you seek is not }
) found!

laguerre —— 90.64 % n
linreg —— 4788 % -
total 66.817 %

16/16

Correctness VS Approximate Computing

Approximate Computing accepts light degradation of the output
VS

Correctness expects a PERFECT output

17/16

Taxonomy

Taxonomy
Taxonomy of 7 reasons of Correctness Attraction:

e Natural randomness

e Relaxed problem

e Nullified perturbation

e Overfit to input data

e Potential alternative executions
e Fixed point effect

e Extra resources

18/16

Threats To Validity

Internal threats

e Bugs in the implementation

External threats

e Limited dataset: 10 projects, only Java

e Overfitting on input values

19/16

	The Attract Protocol
	Experiment
	Demo
	Future Works
	Conclusion

