
Correctness Attraction: A Study of Stability

of Software Behavior Under Runtime

Perturbation

Benjamin DANGLOT

December 6th, 2017

benjamin.danglot@inria.fr

Kungliga Tekniska Högskolan (KTH) - European Chaos Engineering Day

1/16



Introduction

Dijkstra:

“the smallest possible perturbations – i.e. changes of a single

bit – can have the most drastic consequences.”

2/16



Goal: Explore The Perturbability Envelop of Software

RQ: How does Software behave under perturbation?

3/16



Goal: Explore The Perturbability Envelop of Software

RQ: How does Software behave under perturbation?

Perturbation is a change that occurs runtime (6= mutant).

3/16



Goal: Explore The Perturbability Envelop of Software

RQ: How does Software behave under perturbation?

Perturbation is a change that occurs runtime (6= mutant).

Attract Protocol: Explore the perturbability of Software:

3/16



Goal: Explore The Perturbability Envelop of Software

RQ: How does Software behave under perturbation?

Perturbation is a change that occurs runtime (6= mutant).

Attract Protocol: Explore the perturbability of Software:

• Exploring exhaustively

3/16



Goal: Explore The Perturbability Envelop of Software

RQ: How does Software behave under perturbation?

Perturbation is a change that occurs runtime (6= mutant).

Attract Protocol: Explore the perturbability of Software:

• Exploring exhaustively

• Using perfect oracle

3/16



The Attract Protocol



The Attract Protocol: Example

input: bound = 8

Iteration acc i

1 2 8
2 3 7
3 3 6
4 3 5
5 3 4
6 3 3
7 3 2
8 3 1

output: acc = 3

4/16



The Attract Protocol: Example

input: bound = 8

Iteration acc i

1 2 8
2 3 7
3 3 6
4 3 5
5 3 4
6 3 3
7 3 2
8 3 1

output: acc = 3

4/16



The Attract Protocol: Perturbation Points

5/16



The Attract Protocol: Perturbation Points

5/16



The Attract Protocol: Perturbation Points

5/16



The Attract Protocol: Perturbation Points

5/16



The Attract Protocol: Perturbed Execution

input: bound = 8

It
er

at
io

n

acc i acc i

1 2 8 2 8

2 3 7 2 7 +1

3 3 6 3 6

4 3 5 3 5

5 3 4 3 4

6 3 3 3 3

7 3 2 3 2

8 3 1 3 1

output: acc = 3
6/16



The Attract Protocol: Perturbed Execution

input: bound = 8

It
er

at
io

n

acc i acc i

1 2 8 2 8

2 3 7 2 7 +1

3 3 6 3 6

4 3 5 3 5

5 3 4 3 4

6 3 3 3 3

7 3 2 3 2

8 3 1 3 1

output: acc = 3
6/16



The Attract Protocol: Applied On The Example

• Inputs : bound ∈ [0; 100]

• 4950 perturbed executions

• 99.90% correctness ratio

• 5 failed executions (0.1%)

7/16



The Attract Protocol: Exhaustive Exploration

Reference Execution Perturbed Execution 1 Perturbed Execution 2 Perturbed Execution 5

It. acc i

1 2 8

2 3 7

3 3 6

4 3 5

5 3 4

6 3 3

7 3 2

8 3© 1

acc i

2 8 +1

3 7

3 6

3 5

3 4

3 3

3 2

3© 1

acc i

2 8

2 7+1

3 6

3 5

3 4

3 3

3 2

3© 1

acc i

2 8

3 7

3 6

3 5

1 4 +1

1 3

1 2

1© 1

output: acc = 3 output: acc = 3 output: acc = 3 output: acc = 1

8/16



The Attract Protocol: Perfect Oracle

Reference Execution Perturbed Execution 1 Perturbed Execution 2 Perturbed Execution 5

It. acc i

1 2 8

2 3 7

3 3 6

4 3 5

5 3 4

6 3 3

7 3 2

8 3© 1

acc i

2 8 +1

3 7

3 6

3 5

3 4

3 3

3 2

3© 1

acc i

2 8

2 7+1

3 6

3 5

3 4

3 3

3 2

3© 1

acc i

2 8

3 7

3 6

3 5

1 4 +1

1 3

1 2

1© 1

output: acc = 3 output: acc = 3 output: acc = 3 output: acc = 1

8/16



The Attract Protocol: Core Algorithm

1 instrument(prog);

2 for each input i in I do

3 n[pp, i ]← runWithoutPerturbation(prog , i)∀pp ∈ prog ;

4 for each perturbation point pp in prog do

5 for j = 0, to n[pp, i ] do

6 o ← runWithPerturbationAt(prog , i , pp, j);

7 if oracle.assert(i , o) then

8 success ← success + 1;

9 else

10 failure ← failure + 1;

11 end

12 end

13 end

14 end 9/16



Experiment



Experiment: PONE

+1 on every integer expression for each call of each perturbation point

10/16



Experiment: PONE

+1 on every integer expression for each call of each perturbation point

Subject N int
pp —Search space— correctness ratio

quicksort 41 151444 ––––––– 77.6 %

zip 19 38840 ––––––– 76.09 %

sudoku 89 98211 –––––– 68.8 %

md5 164 237680 –– 29.67 %

rsa 117 2576 ––––– 54.97 %

rc4 115 165140 ––– 38.04 %

canny 450 616161 ––––––––– 94.55 %

lcs 79 231786 –––––––– 89.93 %

laguerre 72 423454 ––––––––– 90.64 %

linreg 75 543720 –––– 47.88 %

total 1221 2509012 –––––– 66.817 %

10/16



Answer

RQ: How does Software behave under perturbation?

11/16



Answer

RQ: How does Software behave under perturbation?

Answer:

• In 1676446(66.817%) of 2509012 perturbed executions,

the final output is perfectly correct.

• Software are able to recover from perturbation, and

produce the perfect output.

11/16



Answer: Correctness Attraction

pe
rtu
rb
at
io
n

co
rre
ct
ne
ss

at
tra
ct
io
n

perturbation

correctness
wreckage

12/16



Demo



Demo: What it does?

First fine-grained chaos inside a “production” application.

• Explore the perturbability of a web application

• Running an instrumented version of a e-commerce app

• At each request, one perturbation point is enabled

• The perturbation is +1 on integer expressions

13/16



Demo: screen

14/16



Future Works



Future Works

• Future RQ1: How does the “strength” of the perturbation

impact the correctness ratio: i.e. +1000 instead of +1, or

50% of probability to enable each perturbation point? ⇒
increase the Chaos.

• Future RQ2: How does “production” Software behave under

the Attract protocol?

• Future RQ3: Does the correctness ratio can be used as proxy

to measure the “Antifragility” / “Resiliency” of Software?

• Future RQ4: Could we engineer our Software to increase the

Correctness and so increase the “Resiliency”?

15/16



Conclusion



Conclusion

pe
rtu
rb
at
io
n

co
rre
ct
ne
ss

at
tra
ct
io
n

perturbation

correctness
wreckage

• Exhaustive Exploration

• Perfect Oracle

Subject

correctness ratio

quicksort ––––––– 77.6 %

zip ––––––– 76.09 %

sudoku –––––– 68.8 %

md5 –– 29.67 %

rsa ––––– 54.97 %

rc4 ––– 38.04 %

canny ––––––––– 94.55 %

lcs –––––––– 89.93 %

laguerre ––––––––– 90.64 %

linreg –––– 47.88 %

total –––––– 66.817 %

16/16



Correctness VS Approximate Computing

Approximate Computing accepts light degradation of the output

VS

Correctness expects a PERFECT output

17/16



Taxonomy

Taxonomy

Taxonomy of 7 reasons of Correctness Attraction:

• Natural randomness

• Relaxed problem

• Nullified perturbation

• Overfit to input data

• Potential alternative executions

• Fixed point effect

• Extra resources

18/16



Threats To Validity

Internal threats

• Bugs in the implementation

External threats

• Limited dataset: 10 projects, only Java

• Overfitting on input values

19/16


	The Attract Protocol
	Experiment
	Demo
	Future Works
	Conclusion

